Metabarcoding advances agricultural invertebrate biomonitoring by enhancing resolution, increasing throughput and facilitating network inference

IF 1.6 3区 农林科学 Q2 ENTOMOLOGY Agricultural and Forest Entomology Pub Date : 2024-05-09 DOI:10.1111/afe.12628
Ben S. J. Hawthorne, Jordan P. Cuff, Larissa E. Collins, Darren M. Evans
{"title":"Metabarcoding advances agricultural invertebrate biomonitoring by enhancing resolution, increasing throughput and facilitating network inference","authors":"Ben S. J. Hawthorne, Jordan P. Cuff, Larissa E. Collins, Darren M. Evans","doi":"10.1111/afe.12628","DOIUrl":null,"url":null,"abstract":"<jats:list> <jats:list-item>Biomonitoring of agriculturally important insects is increasingly vital given our need to understand: (a) the severity of impacts by pests and pathogens on crop yield and health and (b) the impact of environmental change and land management on insects, in line with sustainable development and global conservation targets.</jats:list-item> <jats:list-item>Traditional entomological traps remain an important part of the biomonitoring toolbox, but sample processing is laborious and introduces latency, and accuracy can be variable. The integration of molecular techniques such as environmental DNA and DNA metabarcoding into insect biomonitoring has gained increasing attention, but the advantages of doing so, the kind of data this can generate, and how easily and effectively molecular analyses can be integrated with the diverse types of entomological traps currently used remains relatively unclear.</jats:list-item> <jats:list-item>In this review, we examine how combining DNA metabarcoding with a range of conventional and unconventional entomological sampling techniques can advance biomonitoring in a way that is useful to researchers and practitioners. We highlight some of the key challenges and how to mitigate them, using examples of its integration with different sampling methods from the literature (e.g., interception, pitfall and sticky traps) to demonstrate efficacy and suitability.</jats:list-item> <jats:list-item>We discuss how metabarcoding data can be used to infer ecological networks, emphasizing the importance of this as a framework for understanding species interactions and ecosystem functioning for more effective and descriptive biomonitoring.</jats:list-item> <jats:list-item>Finally, future advances in biomonitoring are highlighted, alongside recommendations of best practice for researchers both new to and experienced in invertebrate biomonitoring with metabarcoding.</jats:list-item> </jats:list>","PeriodicalId":7454,"journal":{"name":"Agricultural and Forest Entomology","volume":"42 1","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2024-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Agricultural and Forest Entomology","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1111/afe.12628","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENTOMOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Biomonitoring of agriculturally important insects is increasingly vital given our need to understand: (a) the severity of impacts by pests and pathogens on crop yield and health and (b) the impact of environmental change and land management on insects, in line with sustainable development and global conservation targets. Traditional entomological traps remain an important part of the biomonitoring toolbox, but sample processing is laborious and introduces latency, and accuracy can be variable. The integration of molecular techniques such as environmental DNA and DNA metabarcoding into insect biomonitoring has gained increasing attention, but the advantages of doing so, the kind of data this can generate, and how easily and effectively molecular analyses can be integrated with the diverse types of entomological traps currently used remains relatively unclear. In this review, we examine how combining DNA metabarcoding with a range of conventional and unconventional entomological sampling techniques can advance biomonitoring in a way that is useful to researchers and practitioners. We highlight some of the key challenges and how to mitigate them, using examples of its integration with different sampling methods from the literature (e.g., interception, pitfall and sticky traps) to demonstrate efficacy and suitability. We discuss how metabarcoding data can be used to infer ecological networks, emphasizing the importance of this as a framework for understanding species interactions and ecosystem functioning for more effective and descriptive biomonitoring. Finally, future advances in biomonitoring are highlighted, alongside recommendations of best practice for researchers both new to and experienced in invertebrate biomonitoring with metabarcoding.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
元条码通过提高分辨率、增加吞吐量和促进网络推断,推进农业无脊椎动物生物监测工作
由于我们需要了解:(a) 害虫和病原体对作物产量和健康的严重影响;(b) 环境变化和土地管理对昆虫的影响,以实现可持续发展和全球保护目标,因此对具有重要农业意义的昆虫进行生物监测变得越来越重要。传统的昆虫诱捕器仍然是生物监测工具箱的重要组成部分,但样本处理费时费力,而且准确性可能会有差异。将环境 DNA 和 DNA 元条码等分子技术整合到昆虫生物监测中的做法日益受到关注,但这样做的优势、可生成的数据种类以及如何将分子分析与目前使用的各种昆虫诱捕器轻松有效地整合在一起等问题仍相对不清楚。在这篇综述中,我们将探讨如何将 DNA 元条码与一系列常规和非常规的昆虫学取样技术相结合,以对研究人员和从业人员有用的方式推进生物监测工作。我们强调了一些关键挑战以及如何缓解这些挑战,并使用文献中不同取样方法(如拦截、坑阱和粘性诱捕器)的整合实例来证明其有效性和适用性。我们讨论了如何利用代谢条码数据来推断生态网络,强调了将其作为了解物种相互作用和生态系统功能框架的重要性,以便进行更有效的描述性生物监测。最后,我们还强调了生物监测的未来发展,并为使用元标码进行无脊椎动物生物监测的新手和经验丰富的研究人员提出了最佳实践建议。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Agricultural and Forest Entomology
Agricultural and Forest Entomology 农林科学-昆虫学
CiteScore
3.60
自引率
6.20%
发文量
66
审稿时长
>24 weeks
期刊介绍: Agricultural and Forest Entomology provides a multi-disciplinary and international forum in which researchers can present their work on all aspects of agricultural and forest entomology to other researchers, policy makers and professionals. The Journal welcomes primary research papers, reviews and short communications on entomological research relevant to the control of insect and other arthropod pests. We invite high quality original research papers on the biology, population dynamics, impact and management of pests of the full range of forest, agricultural and horticultural crops.
期刊最新文献
Issue Information Interactions between host plant quality and non‐consumptive predator effects on oviposition and larval behaviour of Plutella xylostella (Lepidoptera: Plutellidae) Tracing the origin of the alien pest Cydia pomonella in Algeria through a worldwide comparison of the species’ DNA barcodes Have native insect pests associated with a native crop in Maine declined over the past three to five decades? Correction to ‘Effects of neonicotinoid seed treatments on wild bee populations in soybean and corn fields in eastern Ontario’
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1