K Hervé Dakpo, Laure Latruffe, Yann Desjeux, Philippe Jeanneaux
{"title":"Measuring productivity when technology is heterogeneous using a latent class stochastic frontier model","authors":"K Hervé Dakpo, Laure Latruffe, Yann Desjeux, Philippe Jeanneaux","doi":"10.1007/s00181-024-02604-0","DOIUrl":null,"url":null,"abstract":"<p>We examine an extension of the latent class stochastic frontier model (LCSFM) to productivity estimation and the decomposition of productivity change into technical change, output-oriented technical efficiency change, and scale change. We base our productivity estimation on a Multi-class Grifell-Tatjé, Lovell & Orea Malmquist (GLOM) index. An advantage of this new productivity index is to account for classes' posterior probabilities to derive individual farm parameters. In addition, we extend our analysis to estimate a metafrontier GLOM productivity index to explore potentialities when all firms use the best available technologies. An empirical application to a sample of French sheep and goat farms observed between 2002 and 2021 confirms the necessity to account for technological heterogeneity when measuring productivity change. Among the two classes of farms identified by the LCSFM, the intensive class experiences TFP gains, while the extensive class sees its TFP worsening. However, the gap between intensive and extensive technologies seems to reduce over time. Finally, the multi-class GLOM reveals technical change as the primary driver of productivity for French goat and sheep farms.</p>","PeriodicalId":11642,"journal":{"name":"Empirical Economics","volume":"47 1","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2024-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Empirical Economics","FirstCategoryId":"96","ListUrlMain":"https://doi.org/10.1007/s00181-024-02604-0","RegionNum":4,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 0
Abstract
We examine an extension of the latent class stochastic frontier model (LCSFM) to productivity estimation and the decomposition of productivity change into technical change, output-oriented technical efficiency change, and scale change. We base our productivity estimation on a Multi-class Grifell-Tatjé, Lovell & Orea Malmquist (GLOM) index. An advantage of this new productivity index is to account for classes' posterior probabilities to derive individual farm parameters. In addition, we extend our analysis to estimate a metafrontier GLOM productivity index to explore potentialities when all firms use the best available technologies. An empirical application to a sample of French sheep and goat farms observed between 2002 and 2021 confirms the necessity to account for technological heterogeneity when measuring productivity change. Among the two classes of farms identified by the LCSFM, the intensive class experiences TFP gains, while the extensive class sees its TFP worsening. However, the gap between intensive and extensive technologies seems to reduce over time. Finally, the multi-class GLOM reveals technical change as the primary driver of productivity for French goat and sheep farms.
期刊介绍:
Empirical Economics publishes high quality papers using econometric or statistical methods to fill the gap between economic theory and observed data. Papers explore such topics as estimation of established relationships between economic variables, testing of hypotheses derived from economic theory, treatment effect estimation, policy evaluation, simulation, forecasting, as well as econometric methods and measurement. Empirical Economics emphasizes the replicability of empirical results. Replication studies of important results in the literature - both positive and negative results - may be published as short papers in Empirical Economics. Authors of all accepted papers and replications are required to submit all data and codes prior to publication (for more details, see: Instructions for Authors).The journal follows a single blind review procedure. In order to ensure the high quality of the journal and an efficient editorial process, a substantial number of submissions that have very poor chances of receiving positive reviews are routinely rejected without sending the papers for review.Officially cited as: Empir Econ