Dawei Luo, Gregory A. O’Neill, Yuqing Yang, Esteban Galeano, Tongli Wang, Barb R. Thomas
{"title":"Population-specific climate sensitive top height curves and their applications to assisted migration","authors":"Dawei Luo, Gregory A. O’Neill, Yuqing Yang, Esteban Galeano, Tongli Wang, Barb R. Thomas","doi":"10.1007/s10342-024-01694-w","DOIUrl":null,"url":null,"abstract":"<p>Growth and yield (G&Y) of forest plantations can be significantly impacted by maladaptation resulting from climate change, and assisted migration has been proposed to mitigate these impacts by restoring populations to their historic climates. However, genecology models currently used for guiding assisted migration do not account for impacts of climate change on cumulative growth and assume that responses of forest population to climate do not change with age. Using provenance trial data for interior lodgepole pine (<i>Pinus contorta</i> subsp. <i>latifolia</i> Douglas) and white spruce (<i>Picea glauca</i> (Moench) Voss) in western Canada, we integrated Universal Response Functions, representing the relationship of population performance with their provenance and site climates, into top height curves in a G&Y model (Growth and Yield Projection System, GYPSY) to develop population-specific climate sensitive top height curves for both species. These new models can estimate the impact of climate change on top height of local populations and populations from a range of provenances to help guide assisted migration. Our findings reveal that climate change is expected to have varying effects on forest productivity across the landscape, with some areas projected to experience a slight increase in productivity by the 2050s, while the remainder are projected to face a significant decline in productivity for both species. Adoption of assisted migration, however, with the optimal populations selected was projected to maintain and even improve productivity at the provincial scale. The findings of this study provide a novel approach to incorporating assisted migration approaches into forest management to mitigate the negative impacts of climate change.</p>","PeriodicalId":11996,"journal":{"name":"European Journal of Forest Research","volume":"137 1","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Forest Research","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1007/s10342-024-01694-w","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FORESTRY","Score":null,"Total":0}
引用次数: 0
Abstract
Growth and yield (G&Y) of forest plantations can be significantly impacted by maladaptation resulting from climate change, and assisted migration has been proposed to mitigate these impacts by restoring populations to their historic climates. However, genecology models currently used for guiding assisted migration do not account for impacts of climate change on cumulative growth and assume that responses of forest population to climate do not change with age. Using provenance trial data for interior lodgepole pine (Pinus contorta subsp. latifolia Douglas) and white spruce (Picea glauca (Moench) Voss) in western Canada, we integrated Universal Response Functions, representing the relationship of population performance with their provenance and site climates, into top height curves in a G&Y model (Growth and Yield Projection System, GYPSY) to develop population-specific climate sensitive top height curves for both species. These new models can estimate the impact of climate change on top height of local populations and populations from a range of provenances to help guide assisted migration. Our findings reveal that climate change is expected to have varying effects on forest productivity across the landscape, with some areas projected to experience a slight increase in productivity by the 2050s, while the remainder are projected to face a significant decline in productivity for both species. Adoption of assisted migration, however, with the optimal populations selected was projected to maintain and even improve productivity at the provincial scale. The findings of this study provide a novel approach to incorporating assisted migration approaches into forest management to mitigate the negative impacts of climate change.
期刊介绍:
The European Journal of Forest Research focuses on publishing innovative results of empirical or model-oriented studies which contribute to the development of broad principles underlying forest ecosystems, their functions and services.
Papers which exclusively report methods, models, techniques or case studies are beyond the scope of the journal, while papers on studies at the molecular or cellular level will be considered where they address the relevance of their results to the understanding of ecosystem structure and function. Papers relating to forest operations and forest engineering will be considered if they are tailored within a forest ecosystem context.