{"title":"Selective flotation separation of gypsum and quartz using dodecyl amine hydrochloride as collector: Mechanism and application","authors":"Mengyao Qi, Weijun Peng, Wei Wang, Yijun Cao, Guixia Fan, Yukun Huang","doi":"10.1002/sia.7320","DOIUrl":null,"url":null,"abstract":"The selective flotation separation of gypsum and quartz in phosphogypsum (PG) is an urgent problem that is very important for the high‐value utilization of PG. In the work, dodecyl amine hydrochloride (DH) was introduced as a collector for the selective flotation separation of gypsum and quartz. The flotation property and selective mechanism of DH on the surface of gypsum and quartz were researched by single mineral flotation experiments, Fourier transform attenuated total reflection infrared spectroscopy analyzer, zeta potential analyzer, X‐ray photoelectron spectrum, molecular dynamic (MD) simulation, etc. Additionally, H<jats:sup>+</jats:sup> was introduced into the mineral‐water system simulated by MD to take into account the effect of acidic conditions on the adsorption of DH. The pre‐adsorption of H<jats:sup>+</jats:sup> on the quartz surface under strongly acidic conditions hindered the electrostatic force adsorption of DH on the quartz surface. Furthermore, DH was adopted as a collector in the direct flotation recovery of gypsum from PG, and the gypsum concentrates with productivity of 69.85%, CaSO<jats:sub>4</jats:sub>·2H<jats:sub>2</jats:sub>O content of 96.33%, and whiteness of 55.00% were obtained. The SiO<jats:sub>2</jats:sub> content in the gypsum concentrate decreased from 9.08% to 0.616%. It suggested that DH could serve as a promising collector in the selective separation of gypsum and quartz in PG via flotation.","PeriodicalId":22062,"journal":{"name":"Surface and Interface Analysis","volume":"1 1","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2024-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Surface and Interface Analysis","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/sia.7320","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The selective flotation separation of gypsum and quartz in phosphogypsum (PG) is an urgent problem that is very important for the high‐value utilization of PG. In the work, dodecyl amine hydrochloride (DH) was introduced as a collector for the selective flotation separation of gypsum and quartz. The flotation property and selective mechanism of DH on the surface of gypsum and quartz were researched by single mineral flotation experiments, Fourier transform attenuated total reflection infrared spectroscopy analyzer, zeta potential analyzer, X‐ray photoelectron spectrum, molecular dynamic (MD) simulation, etc. Additionally, H+ was introduced into the mineral‐water system simulated by MD to take into account the effect of acidic conditions on the adsorption of DH. The pre‐adsorption of H+ on the quartz surface under strongly acidic conditions hindered the electrostatic force adsorption of DH on the quartz surface. Furthermore, DH was adopted as a collector in the direct flotation recovery of gypsum from PG, and the gypsum concentrates with productivity of 69.85%, CaSO4·2H2O content of 96.33%, and whiteness of 55.00% were obtained. The SiO2 content in the gypsum concentrate decreased from 9.08% to 0.616%. It suggested that DH could serve as a promising collector in the selective separation of gypsum and quartz in PG via flotation.
期刊介绍:
Surface and Interface Analysis is devoted to the publication of papers dealing with the development and application of techniques for the characterization of surfaces, interfaces and thin films. Papers dealing with standardization and quantification are particularly welcome, and also those which deal with the application of these techniques to industrial problems. Papers dealing with the purely theoretical aspects of the technique will also be considered. Review articles will be published; prior consultation with one of the Editors is advised in these cases. Papers must clearly be of scientific value in the field and will be submitted to two independent referees. Contributions must be in English and must not have been published elsewhere, and authors must agree not to communicate the same material for publication to any other journal. Authors are invited to submit their papers for publication to John Watts (UK only), Jose Sanz (Rest of Europe), John T. Grant (all non-European countries, except Japan) or R. Shimizu (Japan only).