{"title":"Study on the characteristics of Napier grass fibre reinforced porcelain filler particulates poly lactic acid matrix biocomposite","authors":"Raja Thandavamoorthy, Yuvarajan Devarajan","doi":"10.1177/07316844241253912","DOIUrl":null,"url":null,"abstract":"This study investigates the complex properties of a novel biocomposite by a conventional process, which is composed of poly (lactic acid) (PLA) as the matrix, porcelain particles as fillers, and Napier grass fibre as reinforcement. The primary objective was to evaluate the mechanical, crystalline, water absorption, morphological, and antibacterial properties of the biocomposites in relation to the individual components and their synergistic impacts. When 25 g porcelain particles were added to PLA with Napier grass fibre, mechanical tests demonstrated a 25% increase in tensile strength (maximum tensile strength of 39.76 MPa) and a 30% increase in flexural strength (maximum flexural strength of 41.29 MPa). Scanning electron microscopy (SEM) revealed a strong interfacial bond between the fibre and matrix, with porcelain particles serving as bridges to facilitate stress transmission. The biocomposite exhibited reduced water absorption due to the inherent hydrophobic nature of porcelain, which enhances its resistance to bacterial growth. The study demonstrates that combining Napier grass fibre with porcelain filler particles synergistically enhances the properties of PLA, creating a viable biocomposite material suitable for use in packaging, automotive, and sustainable building industries.","PeriodicalId":16943,"journal":{"name":"Journal of Reinforced Plastics and Composites","volume":"31 1","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2024-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Reinforced Plastics and Composites","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1177/07316844241253912","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, COMPOSITES","Score":null,"Total":0}
引用次数: 0
Abstract
This study investigates the complex properties of a novel biocomposite by a conventional process, which is composed of poly (lactic acid) (PLA) as the matrix, porcelain particles as fillers, and Napier grass fibre as reinforcement. The primary objective was to evaluate the mechanical, crystalline, water absorption, morphological, and antibacterial properties of the biocomposites in relation to the individual components and their synergistic impacts. When 25 g porcelain particles were added to PLA with Napier grass fibre, mechanical tests demonstrated a 25% increase in tensile strength (maximum tensile strength of 39.76 MPa) and a 30% increase in flexural strength (maximum flexural strength of 41.29 MPa). Scanning electron microscopy (SEM) revealed a strong interfacial bond between the fibre and matrix, with porcelain particles serving as bridges to facilitate stress transmission. The biocomposite exhibited reduced water absorption due to the inherent hydrophobic nature of porcelain, which enhances its resistance to bacterial growth. The study demonstrates that combining Napier grass fibre with porcelain filler particles synergistically enhances the properties of PLA, creating a viable biocomposite material suitable for use in packaging, automotive, and sustainable building industries.
期刊介绍:
The Journal of Reinforced Plastics and Composites is a fully peer-reviewed international journal that publishes original research and review articles on a broad range of today''s reinforced plastics and composites including areas in:
Constituent materials: matrix materials, reinforcements and coatings.
Properties and performance: The results of testing, predictive models, and in-service evaluation of a wide range of materials are published, providing the reader with extensive properties data for reference.
Analysis and design: Frequency reports on these subjects inform the reader of analytical techniques, design processes and the many design options available in materials composition.
Processing and fabrication: There is increased interest among materials engineers in cost-effective processing.
Applications: Reports on new materials R&D are often related to the service requirements of specific application areas, such as automotive, marine, construction and aviation.
Reports on special topics are regularly included such as recycling, environmental effects, novel materials, computer-aided design, predictive modelling, and "smart" composite materials.
"The articles in the Journal of Reinforced Plastics and Products are must reading for engineers in industry and for researchers working on leading edge problems" Professor Emeritus Stephen W Tsai National Sun Yat-sen University, Taiwan
This journal is a member of the Committee on Publication Ethics (COPE).