Signal design and performance analysis for LEO high dynamic navigation application

Lei Wang, Jibin Che, Haoyan Chen
{"title":"Signal design and performance analysis for LEO high dynamic navigation application","authors":"Lei Wang, Jibin Che, Haoyan Chen","doi":"10.1017/s0373463323000255","DOIUrl":null,"url":null,"abstract":"With the development of GNSS (Global Navigation Satellite System), LEO (Low Earth Orbit) systems are adopted to enhance the system performance of GNSS. The signal Doppler of the LEO satellite is seven to nine times that of GNSS signals, which benefits positioning performance but leads to high acquisition complexity. This paper proposes the combination of a CSS (Chirp Spread Spectrum) marker and the main body of traditional modulation methods for high dynamic application. The acquisition calculation complexity and mean acquisition time of the proposed signal are analysed and compared with the traditional signal. The result shows that the acquisition calculation complexity is just 26 % of the traditional signal under the parameters considered and the mean acquisition time of the proposed signal is also lower than the traditional signal. Hence, the proposed signal is able to decrease the mean acquisition time of the receiver under the constraint of calculation complexity and should be adopted for LEO high dynamic application.","PeriodicalId":501254,"journal":{"name":"The Journal of Navigation","volume":"117 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Navigation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/s0373463323000255","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

With the development of GNSS (Global Navigation Satellite System), LEO (Low Earth Orbit) systems are adopted to enhance the system performance of GNSS. The signal Doppler of the LEO satellite is seven to nine times that of GNSS signals, which benefits positioning performance but leads to high acquisition complexity. This paper proposes the combination of a CSS (Chirp Spread Spectrum) marker and the main body of traditional modulation methods for high dynamic application. The acquisition calculation complexity and mean acquisition time of the proposed signal are analysed and compared with the traditional signal. The result shows that the acquisition calculation complexity is just 26 % of the traditional signal under the parameters considered and the mean acquisition time of the proposed signal is also lower than the traditional signal. Hence, the proposed signal is able to decrease the mean acquisition time of the receiver under the constraint of calculation complexity and should be adopted for LEO high dynamic application.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
低地轨道高动态导航应用的信号设计和性能分析
随着全球导航卫星系统(GNSS)的发展,低地轨道(LEO)系统被采用来提高 GNSS 的系统性能。低地轨道卫星的信号多普勒是全球导航卫星系统信号的 7 到 9 倍,这有利于提高定位性能,但也导致了较高的采集复杂度。本文提出将 CSS(啁啾扩频)标记与传统调制方法的主体相结合,用于高动态应用。分析了拟议信号的采集计算复杂度和平均采集时间,并与传统信号进行了比较。结果表明,在所考虑的参数下,拟议信号的采集计算复杂度仅为传统信号的 26%,平均采集时间也低于传统信号。因此,在计算复杂度的限制下,拟议信号能够减少接收机的平均采集时间,应在低地轨道高动态应用中采用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Optimal design via polynomial Euler function for UAV applications A critical examination of safety culture in the superyacht industry Deep temporal semi-supervised one-class classification for GNSS radio frequency interference detection An online method for ship trajectory compression using AIS data Exploration of the state-of-the-art of maritime transport safety research: a bibliometric and visualised analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1