Deep temporal semi-supervised one-class classification for GNSS radio frequency interference detection

Viktor Ivanov, Maurizio Scaramuzza, Richard. C. Wilson
{"title":"Deep temporal semi-supervised one-class classification for GNSS radio frequency interference detection","authors":"Viktor Ivanov, Maurizio Scaramuzza, Richard. C. Wilson","doi":"10.1017/s0373463324000134","DOIUrl":null,"url":null,"abstract":"We present a deep learning approach for near real-time detection of Global Navigation Satellite System (GNSS) radio frequency interference (RFI) based on a large amount of aircraft data collected onboard from the Global Positioning System (GPS) and Attitude and Heading Reference System (AHRS). Our approach enables detection of GNSS RFI in the absence of total GPS failure, i.e. while the receiver is still able to estimate a position, which means RFI sources with low power or at larger distance can be detected. We demonstrate how deep one-class classification can be used to detect GNSS RFI. Furthermore, thanks to a unique dataset from the Swiss Air Force and Swiss Air-Rescue (Rega), preprocessed by Swiss Air Navigation Services Ltd. (Skyguide), we demonstrate application of deep learning for GNSS RFI detection on real-world large scale aircraft data containing flight recordings impacted by real jamming. The approach we present is highly general and can be used as a foundation for solving various automated decision-making problems based on different types of Communications, Navigation and Surveillance (CNS) and Air Traffic Management (ATM) streaming data. The experimental results indicate that our system successfully detects GNSS RFI with 83<jats:inline-formula> <jats:alternatives> <jats:tex-math>$\\,\\cdot\\,$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0373463324000134_inline1.png\"/> </jats:alternatives> </jats:inline-formula>5% accuracy. Extensive empirical studies demonstrate that the proposed method outperforms strong machine learning and rule-based baselines.","PeriodicalId":501254,"journal":{"name":"The Journal of Navigation","volume":"32 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Navigation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/s0373463324000134","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We present a deep learning approach for near real-time detection of Global Navigation Satellite System (GNSS) radio frequency interference (RFI) based on a large amount of aircraft data collected onboard from the Global Positioning System (GPS) and Attitude and Heading Reference System (AHRS). Our approach enables detection of GNSS RFI in the absence of total GPS failure, i.e. while the receiver is still able to estimate a position, which means RFI sources with low power or at larger distance can be detected. We demonstrate how deep one-class classification can be used to detect GNSS RFI. Furthermore, thanks to a unique dataset from the Swiss Air Force and Swiss Air-Rescue (Rega), preprocessed by Swiss Air Navigation Services Ltd. (Skyguide), we demonstrate application of deep learning for GNSS RFI detection on real-world large scale aircraft data containing flight recordings impacted by real jamming. The approach we present is highly general and can be used as a foundation for solving various automated decision-making problems based on different types of Communications, Navigation and Surveillance (CNS) and Air Traffic Management (ATM) streaming data. The experimental results indicate that our system successfully detects GNSS RFI with 83 $\,\cdot\,$ 5% accuracy. Extensive empirical studies demonstrate that the proposed method outperforms strong machine learning and rule-based baselines.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于全球导航卫星系统射频干扰检测的深度时空半监督单类分类
我们提出了一种深度学习方法,基于从全球定位系统(GPS)和姿态与航向参考系统(AHRS)收集的大量飞机数据,对全球导航卫星系统(GNSS)射频干扰(RFI)进行近实时检测。我们的方法能够在 GPS 完全失效的情况下检测 GNSS 射频干扰,即接收器仍能估计位置,这意味着可以检测到低功率或较大距离的射频干扰源。我们展示了如何利用深度单类分类来检测 GNSS RFI。此外,通过瑞士空中导航服务有限公司(Skyguide)预处理的瑞士空军和瑞士空中救援队(Rega)的独特数据集,我们展示了如何利用深度单类分类检测 GNSS RFI。(Skyguide)预处理的独特数据集,我们展示了深度学习在真实世界大规模飞机数据(包含受真实干扰影响的飞行记录)中用于 GNSS RFI 检测的应用。我们提出的方法具有很强的通用性,可作为解决基于不同类型通信、导航和监视(CNS)以及空中交通管理(ATM)流数据的各种自动决策问题的基础。实验结果表明,我们的系统成功地检测到了GNSS RFI,准确率为83%。广泛的实证研究表明,所提出的方法优于强大的机器学习和基于规则的基线方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Optimal design via polynomial Euler function for UAV applications A critical examination of safety culture in the superyacht industry Deep temporal semi-supervised one-class classification for GNSS radio frequency interference detection An online method for ship trajectory compression using AIS data Exploration of the state-of-the-art of maritime transport safety research: a bibliometric and visualised analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1