Full error analysis of the random deep splitting method for nonlinear parabolic PDEs and PIDEs with infinite activity

Ariel Neufeld, Philipp Schmocker, Sizhou Wu
{"title":"Full error analysis of the random deep splitting method for nonlinear parabolic PDEs and PIDEs with infinite activity","authors":"Ariel Neufeld, Philipp Schmocker, Sizhou Wu","doi":"arxiv-2405.05192","DOIUrl":null,"url":null,"abstract":"In this paper, we present a randomized extension of the deep splitting\nalgorithm introduced in [Beck, Becker, Cheridito, Jentzen, and Neufeld (2021)]\nusing random neural networks suitable to approximately solve both\nhigh-dimensional nonlinear parabolic PDEs and PIDEs with jumps having\n(possibly) infinite activity. We provide a full error analysis of our so-called\nrandom deep splitting method. In particular, we prove that our random deep\nsplitting method converges to the (unique viscosity) solution of the nonlinear\nPDE or PIDE under consideration. Moreover, we empirically analyze our random\ndeep splitting method by considering several numerical examples including both\nnonlinear PDEs and nonlinear PIDEs relevant in the context of pricing of\nfinancial derivatives under default risk. In particular, we empirically\ndemonstrate in all examples that our random deep splitting method can\napproximately solve nonlinear PDEs and PIDEs in 10'000 dimensions within\nseconds.","PeriodicalId":501084,"journal":{"name":"arXiv - QuantFin - Mathematical Finance","volume":"41 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - QuantFin - Mathematical Finance","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2405.05192","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we present a randomized extension of the deep splitting algorithm introduced in [Beck, Becker, Cheridito, Jentzen, and Neufeld (2021)] using random neural networks suitable to approximately solve both high-dimensional nonlinear parabolic PDEs and PIDEs with jumps having (possibly) infinite activity. We provide a full error analysis of our so-called random deep splitting method. In particular, we prove that our random deep splitting method converges to the (unique viscosity) solution of the nonlinear PDE or PIDE under consideration. Moreover, we empirically analyze our random deep splitting method by considering several numerical examples including both nonlinear PDEs and nonlinear PIDEs relevant in the context of pricing of financial derivatives under default risk. In particular, we empirically demonstrate in all examples that our random deep splitting method can approximately solve nonlinear PDEs and PIDEs in 10'000 dimensions within seconds.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
非线性抛物 PDE 和无限活动 PIDE 的随机深度分裂方法的全误差分析
在本文中,我们介绍了[Beck, Becker, Cheridito, Jentzen, and Neufeld (2021)]中介绍的深度分裂算法的随机扩展,该算法使用随机神经网络,适用于近似求解高维非线性抛物线 PDE 和具有(可能)无限活动性跳跃的 PIDE。我们对所谓的随机深度分裂方法进行了全面的误差分析。特别是,我们证明了我们的随机深度分裂方法收敛于所考虑的非线性抛物线方程或抛物线方程的(唯一粘性)解。此外,我们通过考虑几个数值示例,包括与违约风险下金融衍生品定价相关的非线性 PDE 和非线性 PIDE,对我们的随机深度分裂方法进行了实证分析。特别是,我们在所有例子中都实证证明,我们的随机深度拆分方法可以在几秒钟内解决 10,000 维的非线性 PDE 和 PIDE。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A market resilient data-driven approach to option pricing COMEX Copper Futures Volatility Forecasting: Econometric Models and Deep Learning Ergodicity and Law-of-large numbers for the Volterra Cox-Ingersoll-Ross process Irreversible investment under weighted discounting: effects of decreasing impatience Long-term decomposition of robust pricing kernels under G-expectation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1