{"title":"Prospects for the Development of Hydrogen Energy. Polymer Membranes for Fuel Cells and Electrolyzers","authors":"I. A. Stenina, A. B. Yaroslavtsev","doi":"10.1134/S2517751624010050","DOIUrl":null,"url":null,"abstract":"<p>Due to the increased attention to hydrogen energy and the fact that many countries adopted the programs for its development, the question on the prospects for this area becomes relevant. Initially, Russian hydrogen energy development program was focused on producing hydrogen from natural gas. However, owing to the changed international situation and the declared course to the use of “green” hydrogen, the production of which is not associated with the emission of carbon oxides, special attention should obviously be paid to the development of fuel cells (FC) and electrolyzers. In this review, the main advantages and disadvantages of fuel cells of various types are considered. Today, the most developed industry is low-temperature fuel cells based on proton-conducting membranes (proton-exchange membrane fuel cells in English literature). At the same time, fuel cells based on anion-exchange membranes with OH<sup>–</sup>-ion conductivity are also promising. Their key advantage is the possibility of using significantly cheaper non-perfluorinated membranes and platinum-free catalysts. Considerable attention in the review is paid to fuel cells operating at elevated temperatures. The second part of this review discusses in detail the membranes currently used in these devices and promising materials that can replace them in the near future.</p>","PeriodicalId":700,"journal":{"name":"Membranes and Membrane Technologies","volume":"6 1","pages":"15 - 26"},"PeriodicalIF":2.0000,"publicationDate":"2024-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Membranes and Membrane Technologies","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1134/S2517751624010050","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Due to the increased attention to hydrogen energy and the fact that many countries adopted the programs for its development, the question on the prospects for this area becomes relevant. Initially, Russian hydrogen energy development program was focused on producing hydrogen from natural gas. However, owing to the changed international situation and the declared course to the use of “green” hydrogen, the production of which is not associated with the emission of carbon oxides, special attention should obviously be paid to the development of fuel cells (FC) and electrolyzers. In this review, the main advantages and disadvantages of fuel cells of various types are considered. Today, the most developed industry is low-temperature fuel cells based on proton-conducting membranes (proton-exchange membrane fuel cells in English literature). At the same time, fuel cells based on anion-exchange membranes with OH–-ion conductivity are also promising. Their key advantage is the possibility of using significantly cheaper non-perfluorinated membranes and platinum-free catalysts. Considerable attention in the review is paid to fuel cells operating at elevated temperatures. The second part of this review discusses in detail the membranes currently used in these devices and promising materials that can replace them in the near future.
期刊介绍:
The journal Membranes and Membrane Technologies publishes original research articles and reviews devoted to scientific research and technological advancements in the field of membranes and membrane technologies, including the following main topics:novel membrane materials and creation of highly efficient polymeric and inorganic membranes;hybrid membranes, nanocomposites, and nanostructured membranes;aqueous and nonaqueous filtration processes (micro-, ultra-, and nanofiltration; reverse osmosis);gas separation;electromembrane processes and fuel cells;membrane pervaporation and membrane distillation;membrane catalysis and membrane reactors;water desalination and wastewater treatment;hybrid membrane processes;membrane sensors;membrane extraction and membrane emulsification;mathematical simulation of porous structures and membrane separation processes;membrane characterization;membrane technologies in industry (energy, mineral extraction, pharmaceutics and medicine, chemistry and petroleum chemistry, food industry, and others);membranes and protection of environment (“green chemistry”).The journal has been published in Russian already for several years, English translations of the content used to be integrated in the journal Petroleum Chemistry. This journal is a split off with additional topics.