{"title":"Control of non-Hermitian skin effect by staggered synthetic gauge fields","authors":"Huiyan Tang, Ziteng Wang, Liqin Tang, Daohong Song, Zhigang Chen, Hrvoje Buljan","doi":"10.1063/5.0196844","DOIUrl":null,"url":null,"abstract":"Synthetic gauge fields introduce an unconventional degree of freedom for studying many fundamental phenomena in different branches of physics. Here, we propose a scheme to use staggered synthetic gauge fields for control of the non-Hermitian skin effect (NHSE). A modified Su–Schrieffer–Heeger model is employed, where two dimer chains with non-reciprocal coupling phases are coupled, exhibiting non-trivial point-gap topology and the NHSE. In contrast to previous studies, the skin modes in our model are solely determined by the coupling phase terms associated with the staggered synthetic gauge fields. By manipulating such gauge fields, we can achieve maneuvering of skin modes as well as the bipolar NHSE. As a typical example, we set up a domain wall by imposing different synthetic gauge fields on two sides of the wall, thereby demonstrating flexible control of the non-Hermitian skin modes at the domain wall. Our scheme opens a new avenue for the creation and manipulation of NHSE by synthetic gauge fields, which may find applications in beam shaping and non-Hermitian topological devices.","PeriodicalId":8198,"journal":{"name":"APL Photonics","volume":"23 1","pages":""},"PeriodicalIF":5.4000,"publicationDate":"2024-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"APL Photonics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1063/5.0196844","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0
Abstract
Synthetic gauge fields introduce an unconventional degree of freedom for studying many fundamental phenomena in different branches of physics. Here, we propose a scheme to use staggered synthetic gauge fields for control of the non-Hermitian skin effect (NHSE). A modified Su–Schrieffer–Heeger model is employed, where two dimer chains with non-reciprocal coupling phases are coupled, exhibiting non-trivial point-gap topology and the NHSE. In contrast to previous studies, the skin modes in our model are solely determined by the coupling phase terms associated with the staggered synthetic gauge fields. By manipulating such gauge fields, we can achieve maneuvering of skin modes as well as the bipolar NHSE. As a typical example, we set up a domain wall by imposing different synthetic gauge fields on two sides of the wall, thereby demonstrating flexible control of the non-Hermitian skin modes at the domain wall. Our scheme opens a new avenue for the creation and manipulation of NHSE by synthetic gauge fields, which may find applications in beam shaping and non-Hermitian topological devices.
APL PhotonicsPhysics and Astronomy-Atomic and Molecular Physics, and Optics
CiteScore
10.30
自引率
3.60%
发文量
107
审稿时长
19 weeks
期刊介绍:
APL Photonics is the new dedicated home for open access multidisciplinary research from and for the photonics community. The journal publishes fundamental and applied results that significantly advance the knowledge in photonics across physics, chemistry, biology and materials science.