Anomalous Heat Transfer Enhancement in Separated Flow over a Zigzag-Shaped Dense Package of Inclined Grooves in a Channel Wall at Different Temperature Boundary Conditions
S. A. Isaev, O. O. Mil’man, A. A. Klyus, D. V. Nikushchenko, D. S. Khmara, L. P. Yunakov
{"title":"Anomalous Heat Transfer Enhancement in Separated Flow over a Zigzag-Shaped Dense Package of Inclined Grooves in a Channel Wall at Different Temperature Boundary Conditions","authors":"S. A. Isaev, O. O. Mil’man, A. A. Klyus, D. V. Nikushchenko, D. S. Khmara, L. P. Yunakov","doi":"10.1134/S0015462823602875","DOIUrl":null,"url":null,"abstract":"<p>Rapid development of the anomalous enhancement of separated turbulent Re = 6000 air flow and heat transfer in an in-line single-row package of 31 inclined grooves, 0.2 in dimensionless depth, in a singled-out longitudinal region of the wall of a narrow channel is studied. It is due to the interference of vortex wakes behind the grooves and the acceleration in the channel flow core with the formation of a zone of ultrahigh longitudinal velocity. The wave-shaped parameter characteristics are stabilized in the region of approximately 15th groove, whereupon the oscillation amplitudes are moderately reduced. The return flows in the grooves are enhanced with distance from the entry section, the minimum negative friction diminishing from −2 to −4. The total relative heat removal from the structured region increases at <i>q</i> = const by a factor of approximately 2.75 and by the factor of two at <i>T</i> = const with increase in the relative hydraulic losses by the factor of 1.7, as compared with the case of a plane–parallel channel. The relative heat removal from the surface bounded by the contour of the 20th inclined groove amounts to 3.7 (<i>q</i> = const) with increase in the hydraulic losses by the factor of 2.2. An increase in the local maximum of the longitudinal velocity up to a factor of 1.5, as compared with the mean-mass velocity, can be observable.</p>","PeriodicalId":560,"journal":{"name":"Fluid Dynamics","volume":"59 2","pages":"238 - 259"},"PeriodicalIF":1.0000,"publicationDate":"2024-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fluid Dynamics","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1134/S0015462823602875","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0
Abstract
Rapid development of the anomalous enhancement of separated turbulent Re = 6000 air flow and heat transfer in an in-line single-row package of 31 inclined grooves, 0.2 in dimensionless depth, in a singled-out longitudinal region of the wall of a narrow channel is studied. It is due to the interference of vortex wakes behind the grooves and the acceleration in the channel flow core with the formation of a zone of ultrahigh longitudinal velocity. The wave-shaped parameter characteristics are stabilized in the region of approximately 15th groove, whereupon the oscillation amplitudes are moderately reduced. The return flows in the grooves are enhanced with distance from the entry section, the minimum negative friction diminishing from −2 to −4. The total relative heat removal from the structured region increases at q = const by a factor of approximately 2.75 and by the factor of two at T = const with increase in the relative hydraulic losses by the factor of 1.7, as compared with the case of a plane–parallel channel. The relative heat removal from the surface bounded by the contour of the 20th inclined groove amounts to 3.7 (q = const) with increase in the hydraulic losses by the factor of 2.2. An increase in the local maximum of the longitudinal velocity up to a factor of 1.5, as compared with the mean-mass velocity, can be observable.
期刊介绍:
Fluid Dynamics is an international peer reviewed journal that publishes theoretical, computational, and experimental research on aeromechanics, hydrodynamics, plasma dynamics, underground hydrodynamics, and biomechanics of continuous media. Special attention is given to new trends developing at the leading edge of science, such as theory and application of multi-phase flows, chemically reactive flows, liquid and gas flows in electromagnetic fields, new hydrodynamical methods of increasing oil output, new approaches to the description of turbulent flows, etc.