Anomalous Heat Transfer Enhancement in Separated Flow over a Zigzag-Shaped Dense Package of Inclined Grooves in a Channel Wall at Different Temperature Boundary Conditions

IF 1 4区 工程技术 Q4 MECHANICS Fluid Dynamics Pub Date : 2024-05-08 DOI:10.1134/S0015462823602875
S. A. Isaev, O. O. Mil’man, A. A. Klyus, D. V. Nikushchenko, D. S. Khmara, L. P. Yunakov
{"title":"Anomalous Heat Transfer Enhancement in Separated Flow over a Zigzag-Shaped Dense Package of Inclined Grooves in a Channel Wall at Different Temperature Boundary Conditions","authors":"S. A. Isaev,&nbsp;O. O. Mil’man,&nbsp;A. A. Klyus,&nbsp;D. V. Nikushchenko,&nbsp;D. S. Khmara,&nbsp;L. P. Yunakov","doi":"10.1134/S0015462823602875","DOIUrl":null,"url":null,"abstract":"<p>Rapid development of the anomalous enhancement of separated turbulent Re = 6000 air flow and heat transfer in an in-line single-row package of 31 inclined grooves, 0.2 in dimensionless depth, in a singled-out longitudinal region of the wall of a narrow channel is studied. It is due to the interference of vortex wakes behind the grooves and the acceleration in the channel flow core with the formation of a zone of ultrahigh longitudinal velocity. The wave-shaped parameter characteristics are stabilized in the region of approximately 15th groove, whereupon the oscillation amplitudes are moderately reduced. The return flows in the grooves are enhanced with distance from the entry section, the minimum negative friction diminishing from −2 to −4. The total relative heat removal from the structured region increases at <i>q</i> = const by a factor of approximately 2.75 and by the factor of two at <i>T</i> = const with increase in the relative hydraulic losses by the factor of 1.7, as compared with the case of a plane–parallel channel. The relative heat removal from the surface bounded by the contour of the 20th inclined groove amounts to 3.7 (<i>q</i> = const) with increase in the hydraulic losses by the factor of 2.2. An increase in the local maximum of the longitudinal velocity up to a factor of 1.5, as compared with the mean-mass velocity, can be observable.</p>","PeriodicalId":560,"journal":{"name":"Fluid Dynamics","volume":"59 2","pages":"238 - 259"},"PeriodicalIF":1.0000,"publicationDate":"2024-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fluid Dynamics","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1134/S0015462823602875","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0

Abstract

Rapid development of the anomalous enhancement of separated turbulent Re = 6000 air flow and heat transfer in an in-line single-row package of 31 inclined grooves, 0.2 in dimensionless depth, in a singled-out longitudinal region of the wall of a narrow channel is studied. It is due to the interference of vortex wakes behind the grooves and the acceleration in the channel flow core with the formation of a zone of ultrahigh longitudinal velocity. The wave-shaped parameter characteristics are stabilized in the region of approximately 15th groove, whereupon the oscillation amplitudes are moderately reduced. The return flows in the grooves are enhanced with distance from the entry section, the minimum negative friction diminishing from −2 to −4. The total relative heat removal from the structured region increases at q = const by a factor of approximately 2.75 and by the factor of two at T = const with increase in the relative hydraulic losses by the factor of 1.7, as compared with the case of a plane–parallel channel. The relative heat removal from the surface bounded by the contour of the 20th inclined groove amounts to 3.7 (q = const) with increase in the hydraulic losses by the factor of 2.2. An increase in the local maximum of the longitudinal velocity up to a factor of 1.5, as compared with the mean-mass velocity, can be observable.

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
不同温度边界条件下通道壁上人字形斜槽密集包分离流的异常传热增强
摘要 研究了在狭窄通道壁的单一纵向区域,由 31 个无量纲深度为 0.2 的倾斜凹槽组成的直列单排包中,分离湍流 Re = 6000 气流和传热的快速发展异常增强现象。这是由于沟槽后方的涡流漩涡的干扰和通道流心的加速,形成了一个超高纵向速度区。波形参数特征在大约第 15 个沟槽区域趋于稳定,振荡幅度适度减小。凹槽中的回流随着与入口部分距离的增加而增强,最小负摩擦力从-2 减小到-4。与平面平行通道相比,结构区的总相对散热量在 q = const 时增加了约 2.75 倍,在 T = const 时增加了 2 倍,相对水力损失增加了 1.7 倍。在水力损失增加 2.2 倍的情况下,第 20 个斜槽轮廓边界表面的相对散热量为 3.7(q = 常值)。与平均质量速度相比,纵向速度的局部最大值增加了 1.5 倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Fluid Dynamics
Fluid Dynamics MECHANICS-PHYSICS, FLUIDS & PLASMAS
CiteScore
1.30
自引率
22.20%
发文量
61
审稿时长
6-12 weeks
期刊介绍: Fluid Dynamics is an international peer reviewed journal that publishes theoretical, computational, and experimental research on aeromechanics, hydrodynamics, plasma dynamics, underground hydrodynamics, and biomechanics of continuous media. Special attention is given to new trends developing at the leading edge of science, such as theory and application of multi-phase flows, chemically reactive flows, liquid and gas flows in electromagnetic fields, new hydrodynamical methods of increasing oil output, new approaches to the description of turbulent flows, etc.
期刊最新文献
Development of the Deposit Formation Similarity Criterion with the Electrochemical Number Direct Statistical Modeling of Oxygen Radiation behind a Shock Wave Treatment of the Thermal Nonequilibrium and Ionization Effects on the Refractive Index of a Reacting Gas: Atmospheric Air and Combustion Products Formation of Three-Phase Cavitation Bubbles with Their Own Electric Field in a Hydrophobic Liquid Numerical Simulation of Vapor Bulk Condensation near the Interfacial Surface under Intensive Evaporation Conditions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1