{"title":"Wear performance of FeCuMoTiV high entropy alloy coatings by laser cladding","authors":"Hui Li, Wei He, Feng Wang, Xudong Han, Xinyao Wang, Gonglin Wang, Xiaolong Zhang, Oleksandr Shcheretskyi","doi":"10.1088/2051-672x/ad4403","DOIUrl":null,"url":null,"abstract":"FeCuMoTiV high-entropy alloy coatings were prepared on the surface of aluminum matrix composites using the laser cladding technique. The physical phase composition of the coating, the hardness of each physical phase, and the friction and wear behavior of the coating were studied in detail. The results show that: From the XRD and TEM analysis, the coating’s physical phases, BCC1(MoV) and BCC2(TiFe), are coherent. From the EBSD analysis, the grains of the coating have no obvious selective orientation, and the average equivalent circle diameter is 26.44 <italic toggle=\"yes\">μ</italic>m. Nanomechanical tests showed that the average hardness of the BCC1 phase in the coating was 7831.2 N mm<sup>−2</sup>, which provided the coating with excellent abrasion resistance. The average coefficient of friction of the coating showed a tendency to decrease and then increase with the increase of time, and it floated in the range of 0.3 ± 0.05. The coating forms a structure containing Fe<sub>2</sub>O<sub>3</sub>, MoO<sub>3</sub>, CuO, and TiO<sub>2</sub> mixed oxide ‘glaze layer’ on the wear surface, which provides good lubrication. Combined with SEM analysis, the wear mechanism of the coating is a mixture of abrasive wear, oxidative wear, adhesive wear, and fatigue wear.","PeriodicalId":22028,"journal":{"name":"Surface Topography: Metrology and Properties","volume":"32 1","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2024-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Surface Topography: Metrology and Properties","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1088/2051-672x/ad4403","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0
Abstract
FeCuMoTiV high-entropy alloy coatings were prepared on the surface of aluminum matrix composites using the laser cladding technique. The physical phase composition of the coating, the hardness of each physical phase, and the friction and wear behavior of the coating were studied in detail. The results show that: From the XRD and TEM analysis, the coating’s physical phases, BCC1(MoV) and BCC2(TiFe), are coherent. From the EBSD analysis, the grains of the coating have no obvious selective orientation, and the average equivalent circle diameter is 26.44 μm. Nanomechanical tests showed that the average hardness of the BCC1 phase in the coating was 7831.2 N mm−2, which provided the coating with excellent abrasion resistance. The average coefficient of friction of the coating showed a tendency to decrease and then increase with the increase of time, and it floated in the range of 0.3 ± 0.05. The coating forms a structure containing Fe2O3, MoO3, CuO, and TiO2 mixed oxide ‘glaze layer’ on the wear surface, which provides good lubrication. Combined with SEM analysis, the wear mechanism of the coating is a mixture of abrasive wear, oxidative wear, adhesive wear, and fatigue wear.
期刊介绍:
An international forum for academics, industrialists and engineers to publish the latest research in surface topography measurement and characterisation, instrumentation development and the properties of surfaces.