Ibtissam Chaib, Mostefa Kermadi, Saad Mekhilef, El Madjid Berkouk, Nassereddine Sabeur, Mehdi Seyedmahmoudian, Alex Stojcevski
{"title":"Design and implementation of a discontinuous SVM applied for a quasi Z-source inverter with power loss reduction","authors":"Ibtissam Chaib, Mostefa Kermadi, Saad Mekhilef, El Madjid Berkouk, Nassereddine Sabeur, Mehdi Seyedmahmoudian, Alex Stojcevski","doi":"10.1007/s43236-024-00824-2","DOIUrl":null,"url":null,"abstract":"<p>This study proposes a new control strategy for the quasi Z-source two-level three-phase inverter, accurate discontinuous SVM (AD-ZSVPWM). The proposed AD-ZSVPWM control technique enhances the output power quality by reducing total harmonic distortion (THD) and conduction losses. Low THD is achieved by increasing the algorithm’s accuracy using a division of six vector states in each switching period and the distribution of six shoot-through states within the period. The conduction losses are reduced by splitting each sector into two subsectors of 30°. The proposed control scheme has the following advantages: reduced THD, low conduction loss, and increased boosting factor. MATLAB/Simulink software is used, and an experimental test is conducted to validate the proposed strategy. PLECS software is utilized to calculate the switching and conduction losses. For experimental verification, a hardware test bench comprising a dSPACE DS1104 board that controls a three-phase quasi Z-source inverter that supplies an R-L load is used. Simulation and hardware results show that the proposed scheme provides improved performance in terms of power quality and power loss reduction.</p>","PeriodicalId":50081,"journal":{"name":"Journal of Power Electronics","volume":"148 1","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2024-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Power Electronics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s43236-024-00824-2","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
This study proposes a new control strategy for the quasi Z-source two-level three-phase inverter, accurate discontinuous SVM (AD-ZSVPWM). The proposed AD-ZSVPWM control technique enhances the output power quality by reducing total harmonic distortion (THD) and conduction losses. Low THD is achieved by increasing the algorithm’s accuracy using a division of six vector states in each switching period and the distribution of six shoot-through states within the period. The conduction losses are reduced by splitting each sector into two subsectors of 30°. The proposed control scheme has the following advantages: reduced THD, low conduction loss, and increased boosting factor. MATLAB/Simulink software is used, and an experimental test is conducted to validate the proposed strategy. PLECS software is utilized to calculate the switching and conduction losses. For experimental verification, a hardware test bench comprising a dSPACE DS1104 board that controls a three-phase quasi Z-source inverter that supplies an R-L load is used. Simulation and hardware results show that the proposed scheme provides improved performance in terms of power quality and power loss reduction.
期刊介绍:
The scope of Journal of Power Electronics includes all issues in the field of Power Electronics. Included are techniques for power converters, adjustable speed drives, renewable energy, power quality and utility applications, analysis, modeling and control, power devices and components, power electronics education, and other application.