Earthquake-triggered ground-failure inventory associated with the M7.1 2018 Southcentral Alaska earthquake

IF 3.1 2区 工程技术 Q2 ENGINEERING, CIVIL Earthquake Spectra Pub Date : 2024-05-10 DOI:10.1177/87552930241240461
Sabrina N Martinez, Kate E Allstadt, Eric M Thompson, Sonia Ellison, Lauren N Schaefer, Kelli Baxstrom
{"title":"Earthquake-triggered ground-failure inventory associated with the M7.1 2018 Southcentral Alaska earthquake","authors":"Sabrina N Martinez, Kate E Allstadt, Eric M Thompson, Sonia Ellison, Lauren N Schaefer, Kelli Baxstrom","doi":"10.1177/87552930241240461","DOIUrl":null,"url":null,"abstract":"The 30 November 2018, magnitude (Mw) 7.1 earthquake in Southcentral Alaska triggered substantial landslides, liquefaction, and ground cracking throughout the region, resulting in widespread geotechnical damage to buildings and infrastructure. Despite a challenging reconnaissance and remote-sensing environment, we constructed a detailed digital inventory of ground failure associated with the event from several sources. Sources included information derived from remotely sensed data, and data compiled from literature, social media postings, and earthquake damage information compiled by local, state, and federal agencies. Each instance of ground failure within the inventory contains information on the location and type of observed ground failure, and the methods and data used to document the occurrence. Where high-quality data, such as LIDAR or satellite imagery, were available and showed the ground-failure instance clearly, the extent is mapped as a polygon or polyline. All other locations are mapped as points. There are a total of 886 ground-failure instances documented within the inventory (400 landslides, 286 liquefaction features, and 200 features unattributed to specific processes). A semi-quantitative confidence scheme is used to describe mapping certainty associated with each ground-failure feature. This inventory represents a relatively moderate ground-failure-triggering event that occurred in a subarctic environment. This data paper describes the content within the inventory, the inventory data collection procedures, and limitations of the data. Events of this type are not often documented in detail; thus, adding the inventory data to the US Geological Survey Open Repository of Earthquake-Triggered Ground-Failure Inventories further diversifies the datasets available to the scientific community to be used to better understand and model earthquake-triggered ground failure.","PeriodicalId":11392,"journal":{"name":"Earthquake Spectra","volume":"122 1","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2024-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Earthquake Spectra","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/87552930241240461","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0

Abstract

The 30 November 2018, magnitude (Mw) 7.1 earthquake in Southcentral Alaska triggered substantial landslides, liquefaction, and ground cracking throughout the region, resulting in widespread geotechnical damage to buildings and infrastructure. Despite a challenging reconnaissance and remote-sensing environment, we constructed a detailed digital inventory of ground failure associated with the event from several sources. Sources included information derived from remotely sensed data, and data compiled from literature, social media postings, and earthquake damage information compiled by local, state, and federal agencies. Each instance of ground failure within the inventory contains information on the location and type of observed ground failure, and the methods and data used to document the occurrence. Where high-quality data, such as LIDAR or satellite imagery, were available and showed the ground-failure instance clearly, the extent is mapped as a polygon or polyline. All other locations are mapped as points. There are a total of 886 ground-failure instances documented within the inventory (400 landslides, 286 liquefaction features, and 200 features unattributed to specific processes). A semi-quantitative confidence scheme is used to describe mapping certainty associated with each ground-failure feature. This inventory represents a relatively moderate ground-failure-triggering event that occurred in a subarctic environment. This data paper describes the content within the inventory, the inventory data collection procedures, and limitations of the data. Events of this type are not often documented in detail; thus, adding the inventory data to the US Geological Survey Open Repository of Earthquake-Triggered Ground-Failure Inventories further diversifies the datasets available to the scientific community to be used to better understand and model earthquake-triggered ground failure.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
与 2018 年阿拉斯加中南部 M7.1 级地震相关的地震触发地面塌陷清单
2018 年 11 月 30 日,阿拉斯加中南部发生了 7.1 级地震,引发了整个地区的大量滑坡、液化和地面开裂,对建筑物和基础设施造成了广泛的岩土破坏。尽管勘察和遥感环境极具挑战性,但我们还是从多个来源构建了与此次事件相关的地面破坏的详细数字清单。资料来源包括遥感数据信息、文献数据、社交媒体发布的信息以及由地方、州和联邦机构编制的地震破坏信息。清单中的每个地面塌陷实例都包含观察到的地面塌陷位置和类型的信息,以及用于记录发生情况的方法和数据。如果有高质量的数据,如激光雷达或卫星图像,并能清晰显示地面塌陷实例,则将其范围绘制成多边形或折线图。所有其他地点都以点的形式绘制。清单中共记录了 886 个地面塌陷实例(400 个滑坡、286 个液化特征和 200 个未归属于特定过程的特征)。半定量置信度方案用于描述与每个地面塌陷特征相关的测绘确定性。该清单代表了在亚北极环境下发生的相对温和的地层崩塌触发事件。本数据文件介绍了清单中的内容、清单数据收集程序以及数据的局限性。这种类型的事件通常没有详细记录;因此,将清单数据添加到美国地质调查局地震触发地面塌陷清单开放存储库中,可进一步丰富科学界可用的数据集,用于更好地理解地震触发地面塌陷并建立模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Earthquake Spectra
Earthquake Spectra 工程技术-工程:地质
CiteScore
8.40
自引率
12.00%
发文量
88
审稿时长
6-12 weeks
期刊介绍: Earthquake Spectra, the professional peer-reviewed journal of the Earthquake Engineering Research Institute (EERI), serves as the publication of record for the development of earthquake engineering practice, earthquake codes and regulations, earthquake public policy, and earthquake investigation reports. The journal is published quarterly in both printed and online editions in February, May, August, and November, with additional special edition issues. EERI established Earthquake Spectra with the purpose of improving the practice of earthquake hazards mitigation, preparedness, and recovery — serving the informational needs of the diverse professionals engaged in earthquake risk reduction: civil, geotechnical, mechanical, and structural engineers; geologists, seismologists, and other earth scientists; architects and city planners; public officials; social scientists; and researchers.
期刊最新文献
Deep-neural-network model for predicting ground motion parameters using earthquake horizontal-to-vertical spectral ratios Ground-motions site and event specificity: Insights from assessing a suite of simulated ground motions in the San Francisco Bay Area Analysis of site-response residuals from empirical ground-motion models to account for observed sedimentary basin effects in Wellington, New Zealand Modeling hospital resources based on global epidemiology after earthquake-related disasters Front Matter
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1