{"title":"WiVelo: Fine-grained Wi-Fi Walking Velocity Estimation","authors":"Zhichao Cao, Chenning Li, Li Liu, Mi Zhang","doi":"10.1145/3664196","DOIUrl":null,"url":null,"abstract":"<p>Passive human tracking using Wi-Fi has been researched broadly in the past decade. Besides straight-forward anchor point localization, velocity is another vital sign adopted by the existing approaches to infer user trajectory. However, state-of-the-art Wi-Fi velocity estimation relies on Doppler-Frequency-Shift (DFS) which suffers from the inevitable signal noise incurring unbounded velocity errors, further degrading the tracking accuracy. In this paper, we present WiVelo that explores new spatial-temporal signal correlation features observed from different antennas to achieve accurate velocity estimation. First, we use subcarrier shift distribution (SSD) extracted from channel state information (CSI) to define two correlation features for direction and speed estimation, separately. Then, we design a mesh model calculated by the antennas’ locations to enable a fine-grained velocity estimation with bounded direction error. Finally, with the continuously estimated velocity, we develop an end-to-end trajectory recovery algorithm to mitigate velocity outliers with the property of walking velocity continuity. We implement WiVelo on commodity Wi-Fi hardware and extensively evaluate its tracking accuracy in various environments. The experimental results show our median and 90-percentile tracking errors are 0.47 m and 1.06 m, which are half and a quarter of state-of-the-art. The datasets and source codes are published through Github (https://github.com/research-source/code).</p>","PeriodicalId":50910,"journal":{"name":"ACM Transactions on Sensor Networks","volume":"66 1","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2024-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Sensor Networks","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1145/3664196","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Passive human tracking using Wi-Fi has been researched broadly in the past decade. Besides straight-forward anchor point localization, velocity is another vital sign adopted by the existing approaches to infer user trajectory. However, state-of-the-art Wi-Fi velocity estimation relies on Doppler-Frequency-Shift (DFS) which suffers from the inevitable signal noise incurring unbounded velocity errors, further degrading the tracking accuracy. In this paper, we present WiVelo that explores new spatial-temporal signal correlation features observed from different antennas to achieve accurate velocity estimation. First, we use subcarrier shift distribution (SSD) extracted from channel state information (CSI) to define two correlation features for direction and speed estimation, separately. Then, we design a mesh model calculated by the antennas’ locations to enable a fine-grained velocity estimation with bounded direction error. Finally, with the continuously estimated velocity, we develop an end-to-end trajectory recovery algorithm to mitigate velocity outliers with the property of walking velocity continuity. We implement WiVelo on commodity Wi-Fi hardware and extensively evaluate its tracking accuracy in various environments. The experimental results show our median and 90-percentile tracking errors are 0.47 m and 1.06 m, which are half and a quarter of state-of-the-art. The datasets and source codes are published through Github (https://github.com/research-source/code).
期刊介绍:
ACM Transactions on Sensor Networks (TOSN) is a central publication by the ACM in the interdisciplinary area of sensor networks spanning a broad discipline from signal processing, networking and protocols, embedded systems, information management, to distributed algorithms. It covers research contributions that introduce new concepts, techniques, analyses, or architectures, as well as applied contributions that report on development of new tools and systems or experiences and experiments with high-impact, innovative applications. The Transactions places special attention on contributions to systemic approaches to sensor networks as well as fundamental contributions.