Marathi to Indian Sign Language Machine Translation

IF 1.8 4区 计算机科学 Q3 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE ACM Transactions on Asian and Low-Resource Language Information Processing Pub Date : 2024-05-13 DOI:10.1145/3664609
Suvarna Rajesh. Bhagwat, R. P. Bhavsar, B. V. Pawar
{"title":"Marathi to Indian Sign Language Machine Translation","authors":"Suvarna Rajesh. Bhagwat, R. P. Bhavsar, B. V. Pawar","doi":"10.1145/3664609","DOIUrl":null,"url":null,"abstract":"<p>Machine translation has been a prominent field of research, contributing significantly to human life enhancement. Sign language machine translation, a subfield, focuses on translating spoken language content into sign language and vice versa, thereby facilitating communication between the normal hearing and hard-of-hearing communities, promoting inclusivity.</p><p>This study presents the development of a ‘sign language machine translation system’ converting simple Marathi sentences into Indian Sign Language (ISL) glosses and animation. Given the low-resource nature of both languages, a phrase-level rule-based approach was employed for the translation. Initial encoding of translation rules relied on basic linguistic knowledge of Marathi and ISL, with subsequent incorporation of rules to address 'simultaneous morphological' features in ISL. These rules were applied during the ‘generation phase’ of translation to dynamically adjust phonological sign parameters, resulting in improved target sentence fluency.</p><p>The paper provides a detailed description of the system architecture, translation rules, and comprehensive experimentation. Rigorous evaluation efforts were undertaken, encompassing various linguistic features, and the findings are discussed herein.</p><p>The web-based version of the system serves as an interpreter for brief communications and can support the teaching and learning of sign language and its grammar in schools for hard-of-hearing students.</p>","PeriodicalId":54312,"journal":{"name":"ACM Transactions on Asian and Low-Resource Language Information Processing","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2024-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Asian and Low-Resource Language Information Processing","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1145/3664609","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Machine translation has been a prominent field of research, contributing significantly to human life enhancement. Sign language machine translation, a subfield, focuses on translating spoken language content into sign language and vice versa, thereby facilitating communication between the normal hearing and hard-of-hearing communities, promoting inclusivity.

This study presents the development of a ‘sign language machine translation system’ converting simple Marathi sentences into Indian Sign Language (ISL) glosses and animation. Given the low-resource nature of both languages, a phrase-level rule-based approach was employed for the translation. Initial encoding of translation rules relied on basic linguistic knowledge of Marathi and ISL, with subsequent incorporation of rules to address 'simultaneous morphological' features in ISL. These rules were applied during the ‘generation phase’ of translation to dynamically adjust phonological sign parameters, resulting in improved target sentence fluency.

The paper provides a detailed description of the system architecture, translation rules, and comprehensive experimentation. Rigorous evaluation efforts were undertaken, encompassing various linguistic features, and the findings are discussed herein.

The web-based version of the system serves as an interpreter for brief communications and can support the teaching and learning of sign language and its grammar in schools for hard-of-hearing students.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
马拉地语至印度手语机器翻译
机器翻译一直是一个突出的研究领域,为改善人类生活做出了巨大贡献。本研究介绍了 "手语机器翻译系统 "的开发情况,该系统可将简单的马拉地语句子转换为印度手语(ISL)词汇和动画。鉴于这两种语言的低资源性,翻译采用了基于短语规则的方法。翻译规则的初始编码依赖于马拉地语和印度手语的基本语言知识,随后加入了针对印度手语 "同时形态 "特征的规则。这些规则应用于翻译的 "生成阶段",以动态调整语音符号参数,从而提高目标句子的流畅性。论文详细描述了系统架构、翻译规则和综合实验。该系统的网络版可作为简短交流的口译员,并可为学校中的重听学生手语及其语法的教学提供支持。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
3.60
自引率
15.00%
发文量
241
期刊介绍: The ACM Transactions on Asian and Low-Resource Language Information Processing (TALLIP) publishes high quality original archival papers and technical notes in the areas of computation and processing of information in Asian languages, low-resource languages of Africa, Australasia, Oceania and the Americas, as well as related disciplines. The subject areas covered by TALLIP include, but are not limited to: -Computational Linguistics: including computational phonology, computational morphology, computational syntax (e.g. parsing), computational semantics, computational pragmatics, etc. -Linguistic Resources: including computational lexicography, terminology, electronic dictionaries, cross-lingual dictionaries, electronic thesauri, etc. -Hardware and software algorithms and tools for Asian or low-resource language processing, e.g., handwritten character recognition. -Information Understanding: including text understanding, speech understanding, character recognition, discourse processing, dialogue systems, etc. -Machine Translation involving Asian or low-resource languages. -Information Retrieval: including natural language processing (NLP) for concept-based indexing, natural language query interfaces, semantic relevance judgments, etc. -Information Extraction and Filtering: including automatic abstraction, user profiling, etc. -Speech processing: including text-to-speech synthesis and automatic speech recognition. -Multimedia Asian Information Processing: including speech, image, video, image/text translation, etc. -Cross-lingual information processing involving Asian or low-resource languages. -Papers that deal in theory, systems design, evaluation and applications in the aforesaid subjects are appropriate for TALLIP. Emphasis will be placed on the originality and the practical significance of the reported research.
期刊最新文献
Learning and Vision-based approach for Human fall detection and classification in naturally occurring scenes using video data A DENSE SPATIAL NETWORK MODEL FOR EMOTION RECOGNITION USING LEARNING APPROACHES CNN-Based Models for Emotion and Sentiment Analysis Using Speech Data TRGCN: A Prediction Model for Information Diffusion Based on Transformer and Relational Graph Convolutional Network Adaptive Semantic Information Extraction of Tibetan Opera Mask with Recall Loss
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1