A general modeling scheme for spatiotemporal DGGS with emphasis on encoding and operating multiscale time grids

IF 2.1 3区 地球科学 Q2 GEOGRAPHY Transactions in GIS Pub Date : 2024-05-13 DOI:10.1111/tgis.13173
Jianbin Zhou, Jin Ben, Qishuang Liang, Xinhai Huang, Junjie Ding
{"title":"A general modeling scheme for spatiotemporal DGGS with emphasis on encoding and operating multiscale time grids","authors":"Jianbin Zhou, Jin Ben, Qishuang Liang, Xinhai Huang, Junjie Ding","doi":"10.1111/tgis.13173","DOIUrl":null,"url":null,"abstract":"One of the basic scientific problems concerning geographic information science is how to rapidly organize, query, and compute spatiotemporal big data. The spatiotemporal discrete global grid system (DGGS) provides a homogenized discrete structure for processing multiscale and multitype spatiotemporal data. To date, most research in spatiotemporal DGGS has focused on spatial discretization while neglecting temporal discretization. Here, we propose a general modeling scheme for spatiotemporal DGGS with emphasis on encoding and operating multiscale time grids. We subdivide continuous time into multiscale temporal grids, which are then encoded as integers. Moreover, we designed integer code operations, including hierarchical traversal, neighborhood finding, and temporal relationship calculations. Compared to the multiscale time segment integer coding (MTSIC) approach, the proposed method resulted in 22% higher encoding efficiency, 10.92 times faster decoding, 2.81 times better parent code finding efficiency, 41% improved efficiency, 100% accuracy in finding children codes (compared to less than 100% with MTSIC), and a 62% enhancement in temporal relationship calculation efficiency. The application of querying spatiotemporal trajectory data validates the feasibility and practicality of substituting conventional string‐based time and floating‐point location coordinates with spatiotemporal integer codes to query data. The time encoding and operation methods proposed here indicate high efficiency, superior accuracy, and broad application prospects.","PeriodicalId":47842,"journal":{"name":"Transactions in GIS","volume":"429 1","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2024-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transactions in GIS","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1111/tgis.13173","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOGRAPHY","Score":null,"Total":0}
引用次数: 0

Abstract

One of the basic scientific problems concerning geographic information science is how to rapidly organize, query, and compute spatiotemporal big data. The spatiotemporal discrete global grid system (DGGS) provides a homogenized discrete structure for processing multiscale and multitype spatiotemporal data. To date, most research in spatiotemporal DGGS has focused on spatial discretization while neglecting temporal discretization. Here, we propose a general modeling scheme for spatiotemporal DGGS with emphasis on encoding and operating multiscale time grids. We subdivide continuous time into multiscale temporal grids, which are then encoded as integers. Moreover, we designed integer code operations, including hierarchical traversal, neighborhood finding, and temporal relationship calculations. Compared to the multiscale time segment integer coding (MTSIC) approach, the proposed method resulted in 22% higher encoding efficiency, 10.92 times faster decoding, 2.81 times better parent code finding efficiency, 41% improved efficiency, 100% accuracy in finding children codes (compared to less than 100% with MTSIC), and a 62% enhancement in temporal relationship calculation efficiency. The application of querying spatiotemporal trajectory data validates the feasibility and practicality of substituting conventional string‐based time and floating‐point location coordinates with spatiotemporal integer codes to query data. The time encoding and operation methods proposed here indicate high efficiency, superior accuracy, and broad application prospects.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
时空 DGGS 的一般建模方案,重点是多尺度时间网格的编码和运行
地理信息科学的基本科学问题之一是如何快速组织、查询和计算时空大数据。时空离散全球网格系统(DGGS)为处理多尺度、多类型的时空数据提供了同质化的离散结构。迄今为止,时空离散全球网格系统的研究大多侧重于空间离散化,而忽视了时间离散化。在这里,我们提出了时空 DGGS 的一般建模方案,重点是多尺度时间网格的编码和操作。我们将连续时间细分为多尺度时间网格,然后将其编码为整数。此外,我们还设计了整数编码操作,包括分层遍历、邻域查找和时间关系计算。与多尺度时间片段整数编码(MTSIC)方法相比,所提出的方法编码效率提高了 22%,解码速度提高了 10.92 倍,寻找父码的效率提高了 2.81 倍,效率提高了 41%,寻找子码的准确率达到 100%(而 MTSIC 的准确率不到 100%),时空关系计算效率提高了 62%。时空轨迹数据的查询应用验证了用时空整数代码代替传统的基于字符串的时间和浮点位置坐标来查询数据的可行性和实用性。本文提出的时间编码和运算方法效率高、精度高,具有广阔的应用前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Transactions in GIS
Transactions in GIS GEOGRAPHY-
CiteScore
4.60
自引率
8.30%
发文量
116
期刊介绍: Transactions in GIS is an international journal which provides a forum for high quality, original research articles, review articles, short notes and book reviews that focus on: - practical and theoretical issues influencing the development of GIS - the collection, analysis, modelling, interpretation and display of spatial data within GIS - the connections between GIS and related technologies - new GIS applications which help to solve problems affecting the natural or built environments, or business
期刊最新文献
Knowledge‐Guided Automated Cartographic Generalization Process Construction: A Case Study Based on Map Analysis of Public Maps of China City Influence Network: Mining and Analyzing the Influence of Chinese Cities Based on Social Media PyGRF: An Improved Python Geographical Random Forest Model and Case Studies in Public Health and Natural Disasters Neural Sensing: Toward a New Approach to Understanding Emotional Responses to Place Construction of Earth Observation Knowledge Hub Based on Knowledge Graph
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1