On quantifying heterogeneous treatment effects with regression‐based individualized treatment rules: Loss function families and bounds on estimation error
{"title":"On quantifying heterogeneous treatment effects with regression‐based individualized treatment rules: Loss function families and bounds on estimation error","authors":"Michael T. Gorczyca, Chaeryon Kang","doi":"10.1002/sta4.680","DOIUrl":null,"url":null,"abstract":"SummaryHeterogeneity in response to treatment is a pervasive problem in medicine. Many researchers have proposed individualized treatment rule methods for this problem, which personalize treatment recommendations based on an individual's recorded covariates. A challenge with using these methods in practice is that they determine a treatment rule, rather than quantify treatment benefit. This can be problematic, as a recommended treatment could be burdensome and have negligible improvements in outcome for some individuals. With the aim of helping practitioners make informed modelling choices, we identify two families of loss functions to use with individualized treatment rule methods. Under the assumption of correct model specification, estimation with a loss function from one family ensures that the model's treatment recommendations can be interpreted in terms of the risk difference, while the other family of loss functions ensures that the model's treatment recommendations can be interpreted in terms of the risk ratio. We also derive two upper bounds for a model's error in risk difference and risk ratio estimation. Each upper bound can be calculated using observed data and can provide insight to practitioners regarding model error in estimating treatment effects. We illustrate our contributions with simulation studies as well as with data from the ACTG‐175 AIDS study.","PeriodicalId":56159,"journal":{"name":"Stat","volume":"357 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2024-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Stat","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1002/sta4.680","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0
Abstract
SummaryHeterogeneity in response to treatment is a pervasive problem in medicine. Many researchers have proposed individualized treatment rule methods for this problem, which personalize treatment recommendations based on an individual's recorded covariates. A challenge with using these methods in practice is that they determine a treatment rule, rather than quantify treatment benefit. This can be problematic, as a recommended treatment could be burdensome and have negligible improvements in outcome for some individuals. With the aim of helping practitioners make informed modelling choices, we identify two families of loss functions to use with individualized treatment rule methods. Under the assumption of correct model specification, estimation with a loss function from one family ensures that the model's treatment recommendations can be interpreted in terms of the risk difference, while the other family of loss functions ensures that the model's treatment recommendations can be interpreted in terms of the risk ratio. We also derive two upper bounds for a model's error in risk difference and risk ratio estimation. Each upper bound can be calculated using observed data and can provide insight to practitioners regarding model error in estimating treatment effects. We illustrate our contributions with simulation studies as well as with data from the ACTG‐175 AIDS study.
StatDecision Sciences-Statistics, Probability and Uncertainty
CiteScore
1.10
自引率
0.00%
发文量
85
期刊介绍:
Stat is an innovative electronic journal for the rapid publication of novel and topical research results, publishing compact articles of the highest quality in all areas of statistical endeavour. Its purpose is to provide a means of rapid sharing of important new theoretical, methodological and applied research. Stat is a joint venture between the International Statistical Institute and Wiley-Blackwell.
Stat is characterised by:
• Speed - a high-quality review process that aims to reach a decision within 20 days of submission.
• Concision - a maximum article length of 10 pages of text, not including references.
• Supporting materials - inclusion of electronic supporting materials including graphs, video, software, data and images.
• Scope - addresses all areas of statistics and interdisciplinary areas.
Stat is a scientific journal for the international community of statisticians and researchers and practitioners in allied quantitative disciplines.