Metal-cluster-powered ultramicropore alliance in pore-space-partitioned metal-organic frameworks for benchmark one-step ethylene purification

IF 19.1 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Chem Pub Date : 2024-09-12 DOI:10.1016/j.chempr.2024.04.010
{"title":"Metal-cluster-powered ultramicropore alliance in pore-space-partitioned metal-organic frameworks for benchmark one-step ethylene purification","authors":"","doi":"10.1016/j.chempr.2024.04.010","DOIUrl":null,"url":null,"abstract":"<div><p><span>Ultra-fine structural tuning of metal-organic frameworks (MOFs) using isoreticular chemistry is helpful in designing ideal gas adsorbents but is extremely challenging. Known strategies mainly focus on ligand substitution/modification. Here, we open a pathway, metal-cluster-powered ultramicropore alliance, based on the </span><em>pacs</em> (partitioned <em>acs</em>) platform. The half replacement of Mn<sub>3</sub> clusters by Mn<sub>6</sub> clusters endows the target SNNU-181-Mn<sub>3+6</sub>, the first case of multi-cluster based <em>pacs</em> MOF, with combined ultramicropore as well as finely optimized N sites, resulting in greatly improved performance and setting a benchmark for challenging one-step ethylene (C<sub>2</sub>H<sub>4</sub>) purification. With the highest C<sub>2</sub>H<sub>6</sub> uptake (5.49 mmol g<sup>−1</sup>), record-high C<sub>2</sub>H<sub>2</sub> uptake (5.95 mmol g<sup>−1</sup><span>), and satisfactory ideal adsorbed solution theory (IAST) selectivity, SNNU-181-Mn</span><sub>3+6</sub> can afford top-level C<sub>2</sub>H<sub>4</sub> productivity under ambient conditions. Supported by the isoreticular replacement of the metal cluster module, the ultramicropore alliance breaks new ground in MOF chemistry.</p></div>","PeriodicalId":268,"journal":{"name":"Chem","volume":null,"pages":null},"PeriodicalIF":19.1000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chem","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2451929424001748","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Ultra-fine structural tuning of metal-organic frameworks (MOFs) using isoreticular chemistry is helpful in designing ideal gas adsorbents but is extremely challenging. Known strategies mainly focus on ligand substitution/modification. Here, we open a pathway, metal-cluster-powered ultramicropore alliance, based on the pacs (partitioned acs) platform. The half replacement of Mn3 clusters by Mn6 clusters endows the target SNNU-181-Mn3+6, the first case of multi-cluster based pacs MOF, with combined ultramicropore as well as finely optimized N sites, resulting in greatly improved performance and setting a benchmark for challenging one-step ethylene (C2H4) purification. With the highest C2H6 uptake (5.49 mmol g−1), record-high C2H2 uptake (5.95 mmol g−1), and satisfactory ideal adsorbed solution theory (IAST) selectivity, SNNU-181-Mn3+6 can afford top-level C2H4 productivity under ambient conditions. Supported by the isoreticular replacement of the metal cluster module, the ultramicropore alliance breaks new ground in MOF chemistry.

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
孔隙空间分区金属有机框架中的金属簇驱动超微孔联盟,实现基准一步法乙烯纯化
利用同素异形化学对金属有机框架(MOFs)进行超精细结构调整有助于设计理想的气体吸附剂,但却极具挑战性。已知的策略主要集中在配体替代/改性上。在此,我们以 pacs(分区吸附)平台为基础,开辟了一条以金属簇为动力的超微孔联盟之路。用 Mn6 簇对 Mn3 簇进行半置换,使目标物 SNNU-181-Mn3+6(首例基于 pacs 的多簇 MOF)具有组合超微孔和精细优化的 N 位点,从而大大提高了性能,为具有挑战性的一步法乙烯(C2H4)纯化树立了标杆。SNNU-181-Mn3+6 具有最高的 C2H6 吸收率(5.49 mmol g-1)、创纪录的 C2H2 吸收率(5.95 mmol g-1)和令人满意的理想吸附溶液理论(IAST)选择性,能够在环境条件下提供顶级的 C2H4 生产率。在金属簇模块等规置换的支持下,超微孔联盟在 MOF 化学领域开辟了新天地。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Chem
Chem Environmental Science-Environmental Chemistry
CiteScore
32.40
自引率
1.30%
发文量
281
期刊介绍: Chem, affiliated with Cell as its sister journal, serves as a platform for groundbreaking research and illustrates how fundamental inquiries in chemistry and its related fields can contribute to addressing future global challenges. It was established in 2016, and is currently edited by Robert Eagling.
期刊最新文献
De novo luciferases enable multiplexed bioluminescence imaging One-pot catalytic conversion of polyethylene wastes to gasoline through a dual-catalyst system New light on proton transfer: Spectral and kinetic signature of a transient Eigen complex Sequence-defined main-chain photoswitching macromolecules with odd-even effect-controlled properties Direct production of o-xylene from six-component BTEXs using a channel-pore interconnected metal-organic framework
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1