Jamming Memory into Acoustically Trained Dense Suspensions under Shear

IF 11.6 1区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY Physical Review X Pub Date : 2024-05-14 DOI:10.1103/physrevx.14.021027
Edward Y. X. Ong, Anna R. Barth, Navneet Singh, Meera Ramaswamy, Abhishek Shetty, Bulbul Chakraborty, James P. Sethna, Itai Cohen
{"title":"Jamming Memory into Acoustically Trained Dense Suspensions under Shear","authors":"Edward Y. X. Ong, Anna R. Barth, Navneet Singh, Meera Ramaswamy, Abhishek Shetty, Bulbul Chakraborty, James P. Sethna, Itai Cohen","doi":"10.1103/physrevx.14.021027","DOIUrl":null,"url":null,"abstract":"Systems driven far from equilibrium often retain structural memories of their processing history. This memory has, in some cases, been shown to dramatically alter the material response. For example, work hardening in crystalline metals can alter the hardness, yield strength, and tensile strength to prevent catastrophic failure. Whether memory of processing history can be similarly exploited in flowing systems, where significantly larger changes in structure should be possible, remains poorly understood. Here, we demonstrate a promising route to embedding such useful memories. We build on work showing that exposing a sheared dense suspension to acoustic perturbations of different power allows for dramatically tuning the sheared suspension viscosity and underlying structure. We find that, for sufficiently dense suspensions, upon removing the acoustic perturbations, the suspension shear jams with shear stress contributions from the maximum compressive and maximum extensive axes that reflect or “remember” the acoustic training. Because the contributions from these two orthogonal axes to the total shear stress are antagonistic, it is possible to tune the resulting suspension response in surprising ways. For example, we show that differently trained sheared suspensions exhibit (1) different susceptibility to the same acoustic perturbation, (2) orders of magnitude changes in their instantaneous viscosities upon shear reversal, and (3) even a shear stress that increases in magnitude upon shear cessation. We work through these examples to explain the underlying mechanisms governing each behavior. Then, to illustrate the power of this approach for controlling suspension properties, we demonstrate that flowing states well below the shear jamming threshold can be shear jammed via acoustic training. Collectively, our work paves the way for using acoustically induced memory in dense suspensions to generate rapidly and widely tunable materials.","PeriodicalId":20161,"journal":{"name":"Physical Review X","volume":"228 1","pages":""},"PeriodicalIF":11.6000,"publicationDate":"2024-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review X","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physrevx.14.021027","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Systems driven far from equilibrium often retain structural memories of their processing history. This memory has, in some cases, been shown to dramatically alter the material response. For example, work hardening in crystalline metals can alter the hardness, yield strength, and tensile strength to prevent catastrophic failure. Whether memory of processing history can be similarly exploited in flowing systems, where significantly larger changes in structure should be possible, remains poorly understood. Here, we demonstrate a promising route to embedding such useful memories. We build on work showing that exposing a sheared dense suspension to acoustic perturbations of different power allows for dramatically tuning the sheared suspension viscosity and underlying structure. We find that, for sufficiently dense suspensions, upon removing the acoustic perturbations, the suspension shear jams with shear stress contributions from the maximum compressive and maximum extensive axes that reflect or “remember” the acoustic training. Because the contributions from these two orthogonal axes to the total shear stress are antagonistic, it is possible to tune the resulting suspension response in surprising ways. For example, we show that differently trained sheared suspensions exhibit (1) different susceptibility to the same acoustic perturbation, (2) orders of magnitude changes in their instantaneous viscosities upon shear reversal, and (3) even a shear stress that increases in magnitude upon shear cessation. We work through these examples to explain the underlying mechanisms governing each behavior. Then, to illustrate the power of this approach for controlling suspension properties, we demonstrate that flowing states well below the shear jamming threshold can be shear jammed via acoustic training. Collectively, our work paves the way for using acoustically induced memory in dense suspensions to generate rapidly and widely tunable materials.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
在剪切力作用下将记忆植入声学训练致密悬架
远离平衡状态的系统往往会保留其加工历史的结构记忆。在某些情况下,这种记忆会显著改变材料的反应。例如,结晶金属的加工硬化可以改变硬度、屈服强度和抗拉强度,从而防止灾难性的破坏。在流动系统中,结构可能会发生更大的变化,而加工历史的记忆是否也能在流动系统中得到类似的利用,人们对此还知之甚少。在此,我们展示了嵌入这种有用记忆的可行途径。我们的研究表明,将剪切致密悬浮液暴露在不同功率的声学扰动下,可以极大地调整剪切悬浮液的粘度和底层结构。我们发现,对于足够致密的悬浮液来说,在移除声学扰动后,悬浮液会发生剪切堵塞,来自最大压缩轴和最大扩展轴的剪切应力会反映或 "记住 "声学训练。由于这两个正交轴对总剪应力的贡献是对立的,因此有可能以令人惊讶的方式调整由此产生的悬浮响应。例如,我们发现不同训练的剪切悬浮液会表现出:(1)对相同声学扰动的敏感性不同;(2)剪切反转时瞬时粘度的数量级变化;以及(3)甚至在剪切停止时剪切应力的量级会增加。我们通过这些例子来解释每种行为的基本机制。然后,为了说明这种方法在控制悬浮特性方面的威力,我们演示了通过声学训练可以剪切干扰远低于剪切干扰阈值的流动状态。总之,我们的工作为在致密悬浮液中利用声学诱导记忆生成快速、广泛的可调材料铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Physical Review X
Physical Review X PHYSICS, MULTIDISCIPLINARY-
CiteScore
24.60
自引率
1.60%
发文量
197
审稿时长
3 months
期刊介绍: Physical Review X (PRX) stands as an exclusively online, fully open-access journal, emphasizing innovation, quality, and enduring impact in the scientific content it disseminates. Devoted to showcasing a curated selection of papers from pure, applied, and interdisciplinary physics, PRX aims to feature work with the potential to shape current and future research while leaving a lasting and profound impact in their respective fields. Encompassing the entire spectrum of physics subject areas, PRX places a special focus on groundbreaking interdisciplinary research with broad-reaching influence.
期刊最新文献
Information Arbitrage in Bipartite Heat Engines Revealing the Microscopic Mechanism of Elementary Vortex Pinning in Superconductors Emergent Properties of the Periodic Anderson Model: A High-Resolution, Real-Frequency Study of Heavy-Fermion Quantum Criticality Evidence of Zero-Field Wigner Solids in Ultrathin Films of Cadmium Arsenide Lifted TASEP: A Solvable Paradigm for Speeding up Many-Particle Markov Chains
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1