首页 > 最新文献

Physical Review X最新文献

英文 中文
Revealing the Microscopic Mechanism of Elementary Vortex Pinning in Superconductors 揭示超导体中基本涡旋引脚的微观机制
IF 12.5 1区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY Pub Date : 2024-11-08 DOI: 10.1103/physrevx.14.041039
C. Chen, Y. Liu, Y. Chen, Y. N. Hu, T. Z. Zhang, D. Li, X. Wang, C. X. Wang, Z. Y. W. Lu, Y. H. Zhang, Q. L. Zhang, X. L. Dong, R. Wang, D. L. Feng, T. Zhang
Vortex pinning is a crucial factor that determines the critical current of practical superconductors and enables their diverse applications. However, the underlying mechanism of vortex pinning has long been elusive, lacking a clear microscopic explanation. Here, using high-resolution scanning tunneling microscopy, we studied single vortex pinning induced by point defect in layered FeSe-based superconductors. We found the defect-vortex interaction drives low-energy vortex bound states away from 𝐸F, creating a “mini” gap that effectively lowers the system energy and enhances pinning. By measuring the local density of states, we directly obtained the elementary pinning energy and estimated the pinning force via the spatial gradient of pinning energy. The results are consistent with bulk critical current measurement. Furthermore, we showed that a general microscopic quantum model incorporating defect-vortex interaction can naturally capture our observation. It suggests that the local pairing near pinned vortex core is actually enhanced compared to unpinned vortex, which is beyond the traditional understanding that nonsuperconducting regions pin vortices. Our study thus unveils a general microscopic mechanism of vortex pinning in superconductors and provides insights for enhancing the critical current of practical superconductors.
涡流夹持是决定实用超导体临界电流的关键因素,也是实现其多样化应用的关键因素。然而,长期以来,涡旋钉扎的内在机制一直难以捉摸,缺乏清晰的微观解释。在这里,我们利用高分辨率扫描隧道显微镜研究了层状铁硅基超导体中点缺陷诱导的单涡旋针销现象。我们发现,缺陷与涡旋的相互作用促使低能涡旋束缚态远离𝐸F,从而产生了一个 "迷你 "间隙,有效地降低了系统能量并增强了针销作用。通过测量局部态密度,我们直接获得了基本引脚能量,并通过引脚能量的空间梯度估算了引脚力。结果与块体临界电流测量结果一致。此外,我们还证明了包含缺陷-涡旋相互作用的一般微观量子模型可以自然地捕捉到我们的观察结果。这表明,与未针刺涡旋相比,针刺涡旋核心附近的局部配对实际上是增强的,这超出了非超导区域针刺涡旋的传统理解。因此,我们的研究揭示了超导体中涡旋引脚的一般微观机制,并为增强实用超导体的临界电流提供了启示。
{"title":"Revealing the Microscopic Mechanism of Elementary Vortex Pinning in Superconductors","authors":"C. Chen, Y. Liu, Y. Chen, Y. N. Hu, T. Z. Zhang, D. Li, X. Wang, C. X. Wang, Z. Y. W. Lu, Y. H. Zhang, Q. L. Zhang, X. L. Dong, R. Wang, D. L. Feng, T. Zhang","doi":"10.1103/physrevx.14.041039","DOIUrl":"https://doi.org/10.1103/physrevx.14.041039","url":null,"abstract":"Vortex pinning is a crucial factor that determines the critical current of practical superconductors and enables their diverse applications. However, the underlying mechanism of vortex pinning has long been elusive, lacking a clear microscopic explanation. Here, using high-resolution scanning tunneling microscopy, we studied single vortex pinning induced by point defect in layered FeSe-based superconductors. We found the defect-vortex interaction drives low-energy vortex bound states away from <mjx-container ctxtmenu_counter=\"342\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" overflow=\"linebreak\" role=\"tree\" sre-explorer- style=\"font-size: 100.7%;\" tabindex=\"0\"><mjx-math data-semantic-structure=\"(2 0 1)\"><mjx-mrow><mjx-msub data-semantic-children=\"0,1\" data-semantic- data-semantic-owns=\"0 1\" data-semantic-role=\"latinletter\" data-semantic-speech=\"upper E Subscript normal upper F\" data-semantic-type=\"subscript\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"2\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\"><mjx-c>𝐸</mjx-c></mjx-mi><mjx-script style=\"vertical-align: -0.15em; margin-left: -0.016em;\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"2\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\" size=\"s\"><mjx-c>F</mjx-c></mjx-mi></mjx-script></mjx-msub></mjx-mrow></mjx-math></mjx-container>, creating a “mini” gap that effectively lowers the system energy and enhances pinning. By measuring the local density of states, we directly obtained the elementary pinning energy and estimated the pinning force via the spatial gradient of pinning energy. The results are consistent with bulk critical current measurement. Furthermore, we showed that a general microscopic quantum model incorporating defect-vortex interaction can naturally capture our observation. It suggests that the local pairing near pinned vortex core is actually enhanced compared to unpinned vortex, which is beyond the traditional understanding that nonsuperconducting regions pin vortices. Our study thus unveils a general microscopic mechanism of vortex pinning in superconductors and provides insights for enhancing the critical current of practical superconductors.","PeriodicalId":20161,"journal":{"name":"Physical Review X","volume":"196 1","pages":""},"PeriodicalIF":12.5,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142597114","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Information Arbitrage in Bipartite Heat Engines 两方热机中的信息套利
IF 12.5 1区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY Pub Date : 2024-11-08 DOI: 10.1103/physrevx.14.041038
Matthew P. Leighton, Jannik Ehrich, David A. Sivak
Heat engines and information engines have each historically served as motivating examples for the development of thermodynamics. While these two types of systems are typically thought of as two separate kinds of machines, recent empirical studies of specific systems have hinted at possible connections between the two. Inspired by molecular machines in the cellular environment, which in many cases have separate components in contact with distinct sources of fluctuations, we study bipartite heat engines. We show that a bipartite heat engine can produce net output work only by acting as an information engine. Conversely, information engines can extract more work than the work consumed to power them only if they have access to different sources of fluctuations, i.e., act as heat engines. We illustrate these findings first through an analogy to economics and a cyclically controlled 2D ideal gas. We then explore two analytically tractable model systems in more detail: a Brownian-gyrator heat engine, which we show can be reinterpreted as a feedback-cooling information engine, and a quantum-dot information engine, which can be reinterpreted as a thermoelectric heat engine. Our results suggest design principles for both heat engines and information engines at the nanoscale and ultimately imply constraints on how free-energy transduction is carried out in biological molecular machines.
热机和信息机历来都是推动热力学发展的范例。虽然这两类系统通常被认为是两种不同的机器,但最近对特定系统的实证研究暗示了两者之间可能存在的联系。细胞环境中的分子机器在许多情况下都有独立的部件与不同的波动源接触,受此启发,我们研究了二元热机。我们发现,双向热机只有作为信息引擎才能产生净输出功。相反,信息引擎只有在接触到不同的波动源,即充当热引擎的情况下,才能提取比为其提供动力所消耗的功更多的功。我们首先通过类比经济学和循环控制的二维理想气体来说明这些发现。然后,我们更详细地探讨了两个可分析的模型系统:一个布朗-盖拉特热机,我们证明它可以被重新解释为一个反馈-冷却信息机,以及一个量子点信息机,它可以被重新解释为一个热电热机。我们的研究结果为纳米尺度的热引擎和信息引擎提出了设计原则,并最终对生物分子机器如何进行自由能量转换提出了限制。
{"title":"Information Arbitrage in Bipartite Heat Engines","authors":"Matthew P. Leighton, Jannik Ehrich, David A. Sivak","doi":"10.1103/physrevx.14.041038","DOIUrl":"https://doi.org/10.1103/physrevx.14.041038","url":null,"abstract":"Heat engines and information engines have each historically served as motivating examples for the development of thermodynamics. While these two types of systems are typically thought of as two separate kinds of machines, recent empirical studies of specific systems have hinted at possible connections between the two. Inspired by molecular machines in the cellular environment, which in many cases have separate components in contact with distinct sources of fluctuations, we study bipartite heat engines. We show that a bipartite heat engine can produce net output work only by acting as an information engine. Conversely, information engines can extract more work than the work consumed to power them only if they have access to different sources of fluctuations, i.e., act as heat engines. We illustrate these findings first through an analogy to economics and a cyclically controlled 2D ideal gas. We then explore two analytically tractable model systems in more detail: a Brownian-gyrator heat engine, which we show can be reinterpreted as a feedback-cooling information engine, and a quantum-dot information engine, which can be reinterpreted as a thermoelectric heat engine. Our results suggest design principles for both heat engines and information engines at the nanoscale and ultimately imply constraints on how free-energy transduction is carried out in biological molecular machines.","PeriodicalId":20161,"journal":{"name":"Physical Review X","volume":"18 1","pages":""},"PeriodicalIF":12.5,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142597113","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Emergent Properties of the Periodic Anderson Model: A High-Resolution, Real-Frequency Study of Heavy-Fermion Quantum Criticality 周期性安德森模型的新兴特性:重费米子量子临界的高分辨率实频研究
IF 12.5 1区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY Pub Date : 2024-11-07 DOI: 10.1103/physrevx.14.041036
Andreas Gleis, Seung-Sup B. Lee, Gabriel Kotliar, Jan von Delft
We study paramagnetic quantum criticality in the periodic Anderson model (PAM) using cellular dynamical mean-field theory (CDMFT), with the numerical renormalization group (NRG) as a cluster impurity solver. The PAM describes itinerant <mjx-container ctxtmenu_counter="273" ctxtmenu_oldtabindex="1" jax="CHTML" overflow="linebreak" role="tree" sre-explorer- style="font-size: 100.7%;" tabindex="0"><mjx-math data-semantic-structure="0"><mjx-mi data-semantic-annotation="clearspeak:simple" data-semantic-font="italic" data-semantic- data-semantic-role="latinletter" data-semantic-speech="c" data-semantic-type="identifier"><mjx-c>𝑐</mjx-c></mjx-mi></mjx-math></mjx-container> electrons hybridizing with a lattice of localized <mjx-container ctxtmenu_counter="274" ctxtmenu_oldtabindex="1" jax="CHTML" overflow="linebreak" role="tree" sre-explorer- style="font-size: 100.7%;" tabindex="0"><mjx-math data-semantic-structure="0"><mjx-mi data-semantic-annotation="clearspeak:simple" data-semantic-font="italic" data-semantic- data-semantic-role="latinletter" data-semantic-speech="f" data-semantic-type="identifier"><mjx-c>𝑓</mjx-c></mjx-mi></mjx-math></mjx-container> electrons. At zero temperature, it exhibits a much-studied quantum phase transition from a Kondo phase to a Ruderman-Kittel-Kasuya-Yosida (RKKY) phase when the hybridization is decreased through a so-called Kondo breakdown quantum critical point (KB QCP). There, Kondo screening of <mjx-container ctxtmenu_counter="275" ctxtmenu_oldtabindex="1" jax="CHTML" overflow="linebreak" role="tree" sre-explorer- style="font-size: 100.7%;" tabindex="0"><mjx-math data-semantic-structure="0"><mjx-mi data-semantic-annotation="clearspeak:simple" data-semantic-font="italic" data-semantic- data-semantic-role="latinletter" data-semantic-speech="f" data-semantic-type="identifier"><mjx-c>𝑓</mjx-c></mjx-mi></mjx-math></mjx-container> spins by <mjx-container ctxtmenu_counter="276" ctxtmenu_oldtabindex="1" jax="CHTML" overflow="linebreak" role="tree" sre-explorer- style="font-size: 100.7%;" tabindex="0"><mjx-math data-semantic-structure="0"><mjx-mi data-semantic-annotation="clearspeak:simple" data-semantic-font="italic" data-semantic- data-semantic-role="latinletter" data-semantic-speech="c" data-semantic-type="identifier"><mjx-c>𝑐</mjx-c></mjx-mi></mjx-math></mjx-container> electrons breaks down, so that <mjx-container ctxtmenu_counter="277" ctxtmenu_oldtabindex="1" jax="CHTML" overflow="linebreak" role="tree" sre-explorer- style="font-size: 100.7%;" tabindex="0"><mjx-math data-semantic-structure="0"><mjx-mi data-semantic-annotation="clearspeak:simple" data-semantic-font="italic" data-semantic- data-semantic-role="latinletter" data-semantic-speech="f" data-semantic-type="identifier"><mjx-c>𝑓</mjx-c></mjx-mi></mjx-math></mjx-container> excitations change their character from somewhat itinerant to mainly localized, while <mjx-container ctxtmenu_counter="278" ctxtmenu_oldtabindex="1" jax="CHTML" overflow="linebreak" role="tree
我们使用蜂窝动力学均场理论(CDMFT)研究了周期性安德森模型(PAM)中的顺磁性量子临界,并将数值重正化群(NRG)作为簇杂质求解器。PAM 描述了巡回𝑐电子与局部𝑓电子晶格的杂化。在零温条件下,当杂化程度降低到所谓的 Kondo 击穿量子临界点(KB QCP)时,它表现出从 Kondo 相到 Ruderman-Kittel-Kasuya-Yosida (RKKY) 相的量子相变,这种相变已被广泛研究。在那里,𝑓 自旋对𝑐 电子的 Kondo 屏蔽被打破,因此𝑓 激发改变了它们的特性,从一定程度上的巡回变为主要的局部化,而𝑐 激发则保持巡回。基于《物理评论快报》(Phys.101, 256404 (2008)将 KB 转变解释为轨道选择性莫特转变的基础上,我们在这里通过对各种动力学量(感度、自能和光谱函数)进行高分辨率、实频研究,详细阐明了它的性质。NRG 使我们能够研究 QCP 所支配的、位于两个温度标度 𝑇FL<𝑇NFL 之间的量子临界体系。在这一机制中,我们在几种动力学易感性中发现了非费米液体(NFL)行为的指纹。令人惊讶的是,CDMFT 的自洽性对于稳定 QCP 和 NFL 体系至关重要。费米液体(FL)尺度 𝑇FL 向 KB QCP 减小并消失;在温度低于 𝑇FL 时,FL 行为出现。在 𝑇=0 时,我们发现以下特性。KB 过渡是连续的。𝑓准粒子重量在从两侧接近转变时持续减少,仅在 KB QCP 处消失。因此,𝑓 带的准粒子权重不仅在 Kondo 相中不为零,在 RKKY 相中也不为零;因此,FL 准粒子在这两个相中都包括𝑐 和 𝑓 电子。两相中的费米面(FS)体积不同,这意味着在 KB QCP 上有 FS 重构。大费米面 Kondo 相具有预期的双带结构,而小费米面 RKKY 相却意外地具有三带结构。我们详细分析了 Kondo 相以及 RKKY 相的准粒子特性,并首次发现了它们之间的差异。在 FS 重构的同时,还出现了一个卢廷格面,𝑓 的自能在该面上发散。鲁丁格表面和费米表面的体积通过广义鲁丁格和则与电荷密度相关。我们将较小的费米面体积和出现的卢廷格表面解释为 RKKY 相中 𝑓 电子分化的证据。最后,我们计算了霍尔系数和比热的温度依赖性,发现与实验的定性一致。
{"title":"Emergent Properties of the Periodic Anderson Model: A High-Resolution, Real-Frequency Study of Heavy-Fermion Quantum Criticality","authors":"Andreas Gleis, Seung-Sup B. Lee, Gabriel Kotliar, Jan von Delft","doi":"10.1103/physrevx.14.041036","DOIUrl":"https://doi.org/10.1103/physrevx.14.041036","url":null,"abstract":"We study paramagnetic quantum criticality in the periodic Anderson model (PAM) using cellular dynamical mean-field theory (CDMFT), with the numerical renormalization group (NRG) as a cluster impurity solver. The PAM describes itinerant &lt;mjx-container ctxtmenu_counter=\"273\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" overflow=\"linebreak\" role=\"tree\" sre-explorer- style=\"font-size: 100.7%;\" tabindex=\"0\"&gt;&lt;mjx-math data-semantic-structure=\"0\"&gt;&lt;mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-role=\"latinletter\" data-semantic-speech=\"c\" data-semantic-type=\"identifier\"&gt;&lt;mjx-c&gt;𝑐&lt;/mjx-c&gt;&lt;/mjx-mi&gt;&lt;/mjx-math&gt;&lt;/mjx-container&gt; electrons hybridizing with a lattice of localized &lt;mjx-container ctxtmenu_counter=\"274\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" overflow=\"linebreak\" role=\"tree\" sre-explorer- style=\"font-size: 100.7%;\" tabindex=\"0\"&gt;&lt;mjx-math data-semantic-structure=\"0\"&gt;&lt;mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-role=\"latinletter\" data-semantic-speech=\"f\" data-semantic-type=\"identifier\"&gt;&lt;mjx-c&gt;𝑓&lt;/mjx-c&gt;&lt;/mjx-mi&gt;&lt;/mjx-math&gt;&lt;/mjx-container&gt; electrons. At zero temperature, it exhibits a much-studied quantum phase transition from a Kondo phase to a Ruderman-Kittel-Kasuya-Yosida (RKKY) phase when the hybridization is decreased through a so-called Kondo breakdown quantum critical point (KB QCP). There, Kondo screening of &lt;mjx-container ctxtmenu_counter=\"275\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" overflow=\"linebreak\" role=\"tree\" sre-explorer- style=\"font-size: 100.7%;\" tabindex=\"0\"&gt;&lt;mjx-math data-semantic-structure=\"0\"&gt;&lt;mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-role=\"latinletter\" data-semantic-speech=\"f\" data-semantic-type=\"identifier\"&gt;&lt;mjx-c&gt;𝑓&lt;/mjx-c&gt;&lt;/mjx-mi&gt;&lt;/mjx-math&gt;&lt;/mjx-container&gt; spins by &lt;mjx-container ctxtmenu_counter=\"276\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" overflow=\"linebreak\" role=\"tree\" sre-explorer- style=\"font-size: 100.7%;\" tabindex=\"0\"&gt;&lt;mjx-math data-semantic-structure=\"0\"&gt;&lt;mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-role=\"latinletter\" data-semantic-speech=\"c\" data-semantic-type=\"identifier\"&gt;&lt;mjx-c&gt;𝑐&lt;/mjx-c&gt;&lt;/mjx-mi&gt;&lt;/mjx-math&gt;&lt;/mjx-container&gt; electrons breaks down, so that &lt;mjx-container ctxtmenu_counter=\"277\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" overflow=\"linebreak\" role=\"tree\" sre-explorer- style=\"font-size: 100.7%;\" tabindex=\"0\"&gt;&lt;mjx-math data-semantic-structure=\"0\"&gt;&lt;mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-role=\"latinletter\" data-semantic-speech=\"f\" data-semantic-type=\"identifier\"&gt;&lt;mjx-c&gt;𝑓&lt;/mjx-c&gt;&lt;/mjx-mi&gt;&lt;/mjx-math&gt;&lt;/mjx-container&gt; excitations change their character from somewhat itinerant to mainly localized, while &lt;mjx-container ctxtmenu_counter=\"278\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" overflow=\"linebreak\" role=\"tree","PeriodicalId":20161,"journal":{"name":"Physical Review X","volume":"105 1","pages":""},"PeriodicalIF":12.5,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142596814","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Evidence of Zero-Field Wigner Solids in Ultrathin Films of Cadmium Arsenide 砷化镉超薄薄膜中的零场维格纳固体证据
IF 12.5 1区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY Pub Date : 2024-11-07 DOI: 10.1103/physrevx.14.041037
Simon Munyan, Sina Ahadi, Binghao Guo, Arman Rashidi, Susanne Stemmer
The quantum Wigner crystal is a many-body state where Coulombic repulsion quenches the kinetic energy of electrons, causing them to crystallize into a lattice. Experimental realization of a quantum Wigner crystal at zero magnetic field has been a long-sought goal. Here, we report on the experimental evidence of a Wigner solid in ultra-thin films of cadmium arsenide (<mjx-container ctxtmenu_counter="12" ctxtmenu_oldtabindex="1" jax="CHTML" overflow="linebreak" role="tree" sre-explorer- style="font-size: 100.7%;" tabindex="0"><mjx-math data-semantic-structure="(7 (2 0 1) 6 (5 3 4))"><mjx-mrow data-semantic-annotation="clearspeak:unit" data-semantic-children="2,5" data-semantic-content="6" data-semantic- data-semantic-owns="2 6 5" data-semantic-role="implicit" data-semantic-speech="upper C d 3 upper A s 2" data-semantic-type="infixop"><mjx-msub data-semantic-children="0,1" data-semantic- data-semantic-owns="0 1" data-semantic-parent="7" data-semantic-role="unknown" data-semantic-type="subscript"><mjx-mrow><mjx-mi data-semantic-font="normal" data-semantic- data-semantic-parent="2" data-semantic-role="unknown" data-semantic-type="identifier"><mjx-c noic="true" style="padding-top: 0.706em;">C</mjx-c><mjx-c style="padding-top: 0.706em;">d</mjx-c></mjx-mi></mjx-mrow><mjx-script style="vertical-align: -0.15em;"><mjx-mn data-semantic-annotation="clearspeak:simple" data-semantic-font="normal" data-semantic- data-semantic-parent="2" data-semantic-role="integer" data-semantic-type="number" size="s"><mjx-c>3</mjx-c></mjx-mn></mjx-script></mjx-msub><mjx-mo data-semantic-added="true" data-semantic- data-semantic-operator="infixop,⁢" data-semantic-parent="7" data-semantic-role="multiplication" data-semantic-type="operator"><mjx-c>⁢</mjx-c></mjx-mo><mjx-msub data-semantic-children="3,4" data-semantic- data-semantic-owns="3 4" data-semantic-parent="7" data-semantic-role="unknown" data-semantic-type="subscript"><mjx-mrow><mjx-mi data-semantic-font="normal" data-semantic- data-semantic-parent="5" data-semantic-role="unknown" data-semantic-type="identifier"><mjx-c noic="true" style="padding-top: 0.662em;">A</mjx-c><mjx-c style="padding-top: 0.662em;">s</mjx-c></mjx-mi></mjx-mrow><mjx-script style="vertical-align: -0.15em;"><mjx-mn data-semantic-annotation="clearspeak:simple" data-semantic-font="normal" data-semantic- data-semantic-parent="5" data-semantic-role="integer" data-semantic-type="number" size="s"><mjx-c>2</mjx-c></mjx-mn></mjx-script></mjx-msub></mjx-mrow></mjx-math></mjx-container>) at zero magnetic field. We show that a finite bias depins the domains and produces an unusually sharp-threshold current-voltage behavior. Hysteresis and voltage fluctuations point to domain motion across the pinning potential and disappear at finite temperature as thermal fluctuations overcome the potential. The application of a small magnetic field destroys the Wigner solid, pointing to an unconventional origin. We use Landau-level spectroscopy to show that the formation of the
量子维格纳晶体是一种多体状态,库仑斥力淬灭了电子的动能,使电子结晶成晶格。在实验中实现零磁场下的量子维格纳晶体一直是人们孜孜以求的目标。在这里,我们报告了在零磁场下砷化镉(Cd3As2)超薄薄膜中出现维格纳固体的实验证据。我们的研究表明,有限偏压会使畴沉积,并产生异常尖锐的阈值电流-电压行为。磁滞和电压波动表明畴运动跨越了针销电势,并随着热波动克服电势而在有限温度下消失。施加一个小磁场就会破坏维格纳固体,从而指向一个非传统的起源。我们利用朗道级光谱学证明,随着薄膜厚度的减小,维格纳固体的形成与拓扑转变密切相关。
{"title":"Evidence of Zero-Field Wigner Solids in Ultrathin Films of Cadmium Arsenide","authors":"Simon Munyan, Sina Ahadi, Binghao Guo, Arman Rashidi, Susanne Stemmer","doi":"10.1103/physrevx.14.041037","DOIUrl":"https://doi.org/10.1103/physrevx.14.041037","url":null,"abstract":"The quantum Wigner crystal is a many-body state where Coulombic repulsion quenches the kinetic energy of electrons, causing them to crystallize into a lattice. Experimental realization of a quantum Wigner crystal at zero magnetic field has been a long-sought goal. Here, we report on the experimental evidence of a Wigner solid in ultra-thin films of cadmium arsenide (&lt;mjx-container ctxtmenu_counter=\"12\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" overflow=\"linebreak\" role=\"tree\" sre-explorer- style=\"font-size: 100.7%;\" tabindex=\"0\"&gt;&lt;mjx-math data-semantic-structure=\"(7 (2 0 1) 6 (5 3 4))\"&gt;&lt;mjx-mrow data-semantic-annotation=\"clearspeak:unit\" data-semantic-children=\"2,5\" data-semantic-content=\"6\" data-semantic- data-semantic-owns=\"2 6 5\" data-semantic-role=\"implicit\" data-semantic-speech=\"upper C d 3 upper A s 2\" data-semantic-type=\"infixop\"&gt;&lt;mjx-msub data-semantic-children=\"0,1\" data-semantic- data-semantic-owns=\"0 1\" data-semantic-parent=\"7\" data-semantic-role=\"unknown\" data-semantic-type=\"subscript\"&gt;&lt;mjx-mrow&gt;&lt;mjx-mi data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"2\" data-semantic-role=\"unknown\" data-semantic-type=\"identifier\"&gt;&lt;mjx-c noic=\"true\" style=\"padding-top: 0.706em;\"&gt;C&lt;/mjx-c&gt;&lt;mjx-c style=\"padding-top: 0.706em;\"&gt;d&lt;/mjx-c&gt;&lt;/mjx-mi&gt;&lt;/mjx-mrow&gt;&lt;mjx-script style=\"vertical-align: -0.15em;\"&gt;&lt;mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"2\" data-semantic-role=\"integer\" data-semantic-type=\"number\" size=\"s\"&gt;&lt;mjx-c&gt;3&lt;/mjx-c&gt;&lt;/mjx-mn&gt;&lt;/mjx-script&gt;&lt;/mjx-msub&gt;&lt;mjx-mo data-semantic-added=\"true\" data-semantic- data-semantic-operator=\"infixop,⁢\" data-semantic-parent=\"7\" data-semantic-role=\"multiplication\" data-semantic-type=\"operator\"&gt;&lt;mjx-c&gt;⁢&lt;/mjx-c&gt;&lt;/mjx-mo&gt;&lt;mjx-msub data-semantic-children=\"3,4\" data-semantic- data-semantic-owns=\"3 4\" data-semantic-parent=\"7\" data-semantic-role=\"unknown\" data-semantic-type=\"subscript\"&gt;&lt;mjx-mrow&gt;&lt;mjx-mi data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"5\" data-semantic-role=\"unknown\" data-semantic-type=\"identifier\"&gt;&lt;mjx-c noic=\"true\" style=\"padding-top: 0.662em;\"&gt;A&lt;/mjx-c&gt;&lt;mjx-c style=\"padding-top: 0.662em;\"&gt;s&lt;/mjx-c&gt;&lt;/mjx-mi&gt;&lt;/mjx-mrow&gt;&lt;mjx-script style=\"vertical-align: -0.15em;\"&gt;&lt;mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"5\" data-semantic-role=\"integer\" data-semantic-type=\"number\" size=\"s\"&gt;&lt;mjx-c&gt;2&lt;/mjx-c&gt;&lt;/mjx-mn&gt;&lt;/mjx-script&gt;&lt;/mjx-msub&gt;&lt;/mjx-mrow&gt;&lt;/mjx-math&gt;&lt;/mjx-container&gt;) at zero magnetic field. We show that a finite bias depins the domains and produces an unusually sharp-threshold current-voltage behavior. Hysteresis and voltage fluctuations point to domain motion across the pinning potential and disappear at finite temperature as thermal fluctuations overcome the potential. The application of a small magnetic field destroys the Wigner solid, pointing to an unconventional origin. We use Landau-level spectroscopy to show that the formation of the","PeriodicalId":20161,"journal":{"name":"Physical Review X","volume":"95 1","pages":""},"PeriodicalIF":12.5,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142598152","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Lifted TASEP: A Solvable Paradigm for Speeding up Many-Particle Markov Chains 提升的 TASEP:加速多粒子马尔可夫链的可解范式
IF 12.5 1区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY Pub Date : 2024-11-06 DOI: 10.1103/physrevx.14.041035
Fabian H. L. Essler, Werner Krauth
Virtually all Markov-chain Monte Carlo algorithms used for sampling a given distribution are reversible, and they satisfy the detailed-balance condition. For local chains, this leads to a slow, diffusive exploration of sample space. Significant speedups can be achieved through nonreversible algorithms with the given distribution as a targeted steady state. However, nonreversible algorithms for sampling are difficult to set up and to analyze, and exact speedup results for interacting many-particle systems are very rare. Here, we introduce the “lifted” totally asymmetric simple exclusion process (TASEP) as an exactly solvable paradigm for nonreversible many-particle Markov chains. It samples the same hard-sphere distribution as the Metropolis algorithm for symmetrically diffusing hard-core particles on a one-dimensional lattice. We solve the lifted TASEP by an unusual kind of coordinate Bethe ansatz and show that it exhibits polynomial (in particle number) speedups in the relaxation time for the asymptotic approach of the steady state, as well as the nonasymptotic mixing time, compared to both Metropolis and Kardar-Parisi-Zhang-based dynamics. The lifted TASEP is the reduction onto the one-dimensional lattice of the successful hard-sphere event-chain Monte Carlo algorithm, and we discuss that it can likewise be generalized to soft interaction potentials.
几乎所有用于给定分布采样的马尔可夫链蒙特卡洛算法都是可逆的,并且满足详细平衡条件。对于局部链而言,这会导致对样本空间进行缓慢的扩散式探索。通过以给定分布为目标稳态的非可逆算法,可以显著提高速度。然而,用于采样的非可逆算法很难建立和分析,而且对于相互作用的多粒子系统,精确的加速结果非常罕见。在这里,我们引入了 "提升的 "完全非对称简单排除过程(TASEP),作为非可逆多粒子马尔可夫链的精确可解范例。它采样的硬球分布与一维晶格上对称扩散硬核粒子的 Metropolis 算法相同。我们通过一种不同寻常的坐标贝特方差来求解提升的 TASEP,结果表明,与 Metropolis 和基于 Kardar-Parisi-Zhang 的动力学相比,它在稳态渐近的弛豫时间和非渐近混合时间上都表现出了多项式(粒子数)的加速。提升的 TASEP 是成功的硬球事件链蒙特卡洛算法在一维晶格上的简化,我们讨论了它同样可以推广到软相互作用势。
{"title":"Lifted TASEP: A Solvable Paradigm for Speeding up Many-Particle Markov Chains","authors":"Fabian H. L. Essler, Werner Krauth","doi":"10.1103/physrevx.14.041035","DOIUrl":"https://doi.org/10.1103/physrevx.14.041035","url":null,"abstract":"Virtually all Markov-chain Monte Carlo algorithms used for sampling a given distribution are reversible, and they satisfy the detailed-balance condition. For local chains, this leads to a slow, diffusive exploration of sample space. Significant speedups can be achieved through nonreversible algorithms with the given distribution as a targeted steady state. However, nonreversible algorithms for sampling are difficult to set up and to analyze, and exact speedup results for interacting many-particle systems are very rare. Here, we introduce the “lifted” totally asymmetric simple exclusion process (TASEP) as an exactly solvable paradigm for nonreversible many-particle Markov chains. It samples the same hard-sphere distribution as the Metropolis algorithm for symmetrically diffusing hard-core particles on a one-dimensional lattice. We solve the lifted TASEP by an unusual kind of coordinate Bethe ansatz and show that it exhibits polynomial (in particle number) speedups in the relaxation time for the asymptotic approach of the steady state, as well as the nonasymptotic mixing time, compared to both Metropolis and Kardar-Parisi-Zhang-based dynamics. The lifted TASEP is the reduction onto the one-dimensional lattice of the successful hard-sphere event-chain Monte Carlo algorithm, and we discuss that it can likewise be generalized to soft interaction potentials.","PeriodicalId":20161,"journal":{"name":"Physical Review X","volume":"69 1","pages":""},"PeriodicalIF":12.5,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142588845","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Anomalous Long-Ranged Influence of an Inclusion in Momentum-Conserving Active Fluids 动量守恒型活性流体中夹杂物的异常远距离影响
IF 12.5 1区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY Pub Date : 2024-11-06 DOI: 10.1103/physrevx.14.041034
Thibaut Arnoulx de Pirey, Yariv Kafri, Sriram Ramaswamy
We show that an inclusion placed inside a dilute Stokesian suspension of microswimmers induces power-law number-density modulations and flows. These take a different form depending on whether the inclusion is held fixed by an external force—for example, an optical tweezer—or if it is free. When the inclusion is held in place, the far-field fluid flow is a Stokeslet, while the microswimmer density decays as <mjx-container ctxtmenu_counter="31" ctxtmenu_oldtabindex="1" jax="CHTML" overflow="linebreak" role="tree" sre-explorer- style="font-size: 100.7%;" tabindex="0"><mjx-math data-semantic-children="0,7" data-semantic-content="1" data-semantic- data-semantic-owns="0 1 7" data-semantic-role="division" data-semantic-speech="1 divided by r Superscript 2 plus epsilon" data-semantic-structure="(8 0 1 (7 2 (6 3 4 5)))" data-semantic-type="infixop"><mjx-mn data-semantic-annotation="clearspeak:simple" data-semantic-font="normal" data-semantic- data-semantic-parent="8" data-semantic-role="integer" data-semantic-type="number"><mjx-c>1</mjx-c></mjx-mn><mjx-mo data-semantic- data-semantic-operator="infixop,/" data-semantic-parent="8" data-semantic-role="division" data-semantic-type="operator"><mjx-c>/</mjx-c></mjx-mo><mjx-msup data-semantic-children="2,6" data-semantic- data-semantic-owns="2 6" data-semantic-parent="8" data-semantic-role="latinletter" data-semantic-type="superscript"><mjx-mi data-semantic-annotation="clearspeak:simple" data-semantic-font="italic" data-semantic- data-semantic-parent="7" data-semantic-role="latinletter" data-semantic-type="identifier"><mjx-c>𝑟</mjx-c></mjx-mi><mjx-script style="vertical-align: 0.363em;"><mjx-mrow data-semantic-children="3,5" data-semantic-content="4" data-semantic- data-semantic-owns="3 4 5" data-semantic-parent="7" data-semantic-role="addition" data-semantic-type="infixop" size="s"><mjx-mn data-semantic-annotation="clearspeak:simple" data-semantic-font="normal" data-semantic- data-semantic-parent="6" data-semantic-role="integer" data-semantic-type="number"><mjx-c>2</mjx-c></mjx-mn><mjx-mo data-semantic- data-semantic-operator="infixop,+" data-semantic-parent="6" data-semantic-role="addition" data-semantic-type="operator"><mjx-c>+</mjx-c></mjx-mo><mjx-mi data-semantic-annotation="clearspeak:simple" data-semantic-font="italic" data-semantic- data-semantic-parent="6" data-semantic-role="greekletter" data-semantic-type="identifier"><mjx-c>𝜀</mjx-c></mjx-mi></mjx-mrow></mjx-script></mjx-msup></mjx-math></mjx-container>, with <mjx-container ctxtmenu_counter="32" ctxtmenu_oldtabindex="1" jax="CHTML" overflow="linebreak" role="tree" sre-explorer- style="font-size: 100.7%;" tabindex="0"><mjx-math data-semantic-structure="0"><mjx-mi data-semantic-annotation="clearspeak:simple" data-semantic-font="italic" data-semantic- data-semantic-role="latinletter" data-semantic-speech="r" data-semantic-type="identifier"><mjx-c>𝑟</mjx-c></mjx-mi></mjx-math></mjx-container> the distance from the inclusion and <mjx-container ctxtmenu
我们的研究表明,放置在微游子的稀释斯托克斯悬浮液中的包裹体会诱发幂律数密度调制和流动。根据包体是否被外力固定--例如光学镊子--或是否自由,它们的形式有所不同。当包涵体被固定时,远场流体流为斯托克斯小波,而微观密度的衰减为 1/𝑟2+𝜀,其中𝑟为与包涵体的距离,𝜀为异常指数,它取决于包涵体的对称性,并作为表征对流效应和扩散效应相对振幅的无量纲数的函数连续变化。与角度有关的非简单形式取决于相同的无量纲数。当包含体自由移动时,远场流体流是一个应力子,微泳密度以 1/𝑟2 的形式衰减,并具有简单的角度依赖性。这些长程调制介导了夹杂物之间的长程相互作用,我们对其进行了表征。
{"title":"Anomalous Long-Ranged Influence of an Inclusion in Momentum-Conserving Active Fluids","authors":"Thibaut Arnoulx de Pirey, Yariv Kafri, Sriram Ramaswamy","doi":"10.1103/physrevx.14.041034","DOIUrl":"https://doi.org/10.1103/physrevx.14.041034","url":null,"abstract":"We show that an inclusion placed inside a dilute Stokesian suspension of microswimmers induces power-law number-density modulations and flows. These take a different form depending on whether the inclusion is held fixed by an external force—for example, an optical tweezer—or if it is free. When the inclusion is held in place, the far-field fluid flow is a Stokeslet, while the microswimmer density decays as &lt;mjx-container ctxtmenu_counter=\"31\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" overflow=\"linebreak\" role=\"tree\" sre-explorer- style=\"font-size: 100.7%;\" tabindex=\"0\"&gt;&lt;mjx-math data-semantic-children=\"0,7\" data-semantic-content=\"1\" data-semantic- data-semantic-owns=\"0 1 7\" data-semantic-role=\"division\" data-semantic-speech=\"1 divided by r Superscript 2 plus epsilon\" data-semantic-structure=\"(8 0 1 (7 2 (6 3 4 5)))\" data-semantic-type=\"infixop\"&gt;&lt;mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"8\" data-semantic-role=\"integer\" data-semantic-type=\"number\"&gt;&lt;mjx-c&gt;1&lt;/mjx-c&gt;&lt;/mjx-mn&gt;&lt;mjx-mo data-semantic- data-semantic-operator=\"infixop,/\" data-semantic-parent=\"8\" data-semantic-role=\"division\" data-semantic-type=\"operator\"&gt;&lt;mjx-c&gt;/&lt;/mjx-c&gt;&lt;/mjx-mo&gt;&lt;mjx-msup data-semantic-children=\"2,6\" data-semantic- data-semantic-owns=\"2 6\" data-semantic-parent=\"8\" data-semantic-role=\"latinletter\" data-semantic-type=\"superscript\"&gt;&lt;mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"7\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\"&gt;&lt;mjx-c&gt;𝑟&lt;/mjx-c&gt;&lt;/mjx-mi&gt;&lt;mjx-script style=\"vertical-align: 0.363em;\"&gt;&lt;mjx-mrow data-semantic-children=\"3,5\" data-semantic-content=\"4\" data-semantic- data-semantic-owns=\"3 4 5\" data-semantic-parent=\"7\" data-semantic-role=\"addition\" data-semantic-type=\"infixop\" size=\"s\"&gt;&lt;mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"6\" data-semantic-role=\"integer\" data-semantic-type=\"number\"&gt;&lt;mjx-c&gt;2&lt;/mjx-c&gt;&lt;/mjx-mn&gt;&lt;mjx-mo data-semantic- data-semantic-operator=\"infixop,+\" data-semantic-parent=\"6\" data-semantic-role=\"addition\" data-semantic-type=\"operator\"&gt;&lt;mjx-c&gt;+&lt;/mjx-c&gt;&lt;/mjx-mo&gt;&lt;mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"6\" data-semantic-role=\"greekletter\" data-semantic-type=\"identifier\"&gt;&lt;mjx-c&gt;𝜀&lt;/mjx-c&gt;&lt;/mjx-mi&gt;&lt;/mjx-mrow&gt;&lt;/mjx-script&gt;&lt;/mjx-msup&gt;&lt;/mjx-math&gt;&lt;/mjx-container&gt;, with &lt;mjx-container ctxtmenu_counter=\"32\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" overflow=\"linebreak\" role=\"tree\" sre-explorer- style=\"font-size: 100.7%;\" tabindex=\"0\"&gt;&lt;mjx-math data-semantic-structure=\"0\"&gt;&lt;mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-role=\"latinletter\" data-semantic-speech=\"r\" data-semantic-type=\"identifier\"&gt;&lt;mjx-c&gt;𝑟&lt;/mjx-c&gt;&lt;/mjx-mi&gt;&lt;/mjx-math&gt;&lt;/mjx-container&gt; the distance from the inclusion and &lt;mjx-container ctxtmenu","PeriodicalId":20161,"journal":{"name":"Physical Review X","volume":"86 1","pages":""},"PeriodicalIF":12.5,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142588848","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Optical Time-Domain Quantum State Tomography on a Subcycle Scale 亚周期尺度的光学时域量子态层析成像技术
IF 12.5 1区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY Pub Date : 2024-11-05 DOI: 10.1103/physrevx.14.041032
Emanuel Hubenschmid, Thiago L. M. Guedes, Guido Burkard
Following recent progress in the experimental application of electro-optic sampling to the detection of the quantum fluctuations of the electromagnetic-field ground state and ultrabroadband squeezed states on a subcycle scale, we propose an approach to elevate broadband electro-optic sampling from a spectroscopic method to a full quantum tomography scheme, able to reconstruct a free-space quantum state directly in the time domain. By combining two recently developed methods to theoretically describe quantum electro-optic sampling, we analytically relate the photon-count probability distribution of the electro-optic signal to a transformed phase-space quasiprobability distribution of the sampled quantum state as a function of the time delay between the sampled midinfrared pulsed state and an ultrabroadband near-infrared probe pulse. We catalog and analyze sources of noise and show that in quantum electro-optic sampling with an ultrabroadband probe pulse one can expect to observe thermalization due to entanglement breaking. Mitigation of the thermalization noise enables a tomographic reconstruction of broadband quantum states while granting access to its dynamics on a subcycle scale.
继最近将电光采样应用于探测电磁场基态和超宽带挤压态在亚周期尺度上的量子波动的实验取得进展之后,我们提出了一种方法,将宽带电光采样从光谱学方法提升为完整的量子层析成像方案,能够直接在时域中重建自由空间量子态。通过结合最近开发的两种理论描述量子电光采样的方法,我们分析了电光信号的光子计数概率分布与采样量子态的转换相空间准概率分布之间的关系,它是采样中红外脉冲态与超宽带近红外探测脉冲之间时间延迟的函数。我们对噪声源进行了编目和分析,结果表明,在使用超宽带探测脉冲进行量子电光采样时,有望观察到由于纠缠断裂而产生的热化现象。减弱热化噪声可以对宽带量子态进行层析重建,同时获得其亚周期尺度的动态。
{"title":"Optical Time-Domain Quantum State Tomography on a Subcycle Scale","authors":"Emanuel Hubenschmid, Thiago L. M. Guedes, Guido Burkard","doi":"10.1103/physrevx.14.041032","DOIUrl":"https://doi.org/10.1103/physrevx.14.041032","url":null,"abstract":"Following recent progress in the experimental application of electro-optic sampling to the detection of the quantum fluctuations of the electromagnetic-field ground state and ultrabroadband squeezed states on a subcycle scale, we propose an approach to elevate broadband electro-optic sampling from a spectroscopic method to a full quantum tomography scheme, able to reconstruct a free-space quantum state directly in the time domain. By combining two recently developed methods to theoretically describe quantum electro-optic sampling, we analytically relate the photon-count probability distribution of the electro-optic signal to a transformed phase-space quasiprobability distribution of the sampled quantum state as a function of the time delay between the sampled midinfrared pulsed state and an ultrabroadband near-infrared probe pulse. We catalog and analyze sources of noise and show that in quantum electro-optic sampling with an ultrabroadband probe pulse one can expect to observe thermalization due to entanglement breaking. Mitigation of the thermalization noise enables a tomographic reconstruction of broadband quantum states while granting access to its dynamics on a subcycle scale.","PeriodicalId":20161,"journal":{"name":"Physical Review X","volume":"47 1","pages":""},"PeriodicalIF":12.5,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142588455","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
CFT𝐷fromTQFT𝐷+1via Holographic Tensor Network, and Precision Discretization ofCFT2 通过全息张量网络的 CFT𝐷fromTQFT𝐷+1 和 CFT 的精确离散化2
IF 12.5 1区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY Pub Date : 2024-11-05 DOI: 10.1103/physrevx.14.041033
Lin Chen, Kaixin Ji, Haochen Zhang, Ce Shen, Ruoshui Wang, Xiangdong Zeng, Ling-Yan Hung
We show that the path integral of conformal field theories in <mjx-container ctxtmenu_counter="143" ctxtmenu_oldtabindex="1" jax="CHTML" overflow="linebreak" role="tree" sre-explorer- style="font-size: 100.7%;" tabindex="0"><mjx-math data-semantic-structure="0"><mjx-mi data-semantic-annotation="clearspeak:simple" data-semantic-font="italic" data-semantic- data-semantic-role="latinletter" data-semantic-speech="upper D" data-semantic-type="identifier"><mjx-c>𝐷</mjx-c></mjx-mi></mjx-math></mjx-container> dimensions (<mjx-container ctxtmenu_counter="144" ctxtmenu_oldtabindex="1" jax="CHTML" overflow="linebreak" role="tree" sre-explorer- style="font-size: 100.7%;" tabindex="0"><mjx-math data-semantic-structure="(2 0 1)"><mjx-msub data-semantic-children="0,1" data-semantic- data-semantic-owns="0 1" data-semantic-role="unknown" data-semantic-speech="upper C upper F upper T Subscript upper D" data-semantic-type="subscript"><mjx-mi data-semantic-font="normal" data-semantic- data-semantic-parent="2" data-semantic-role="unknown" data-semantic-type="identifier"><mjx-c noic="true" style="padding-top: 0.669em;">C</mjx-c><mjx-c noic="true" style="padding-top: 0.669em;">F</mjx-c><mjx-c style="padding-top: 0.669em;">T</mjx-c></mjx-mi><mjx-script style="vertical-align: -0.15em;"><mjx-mi data-semantic-annotation="clearspeak:simple" data-semantic-font="italic" data-semantic- data-semantic-parent="2" data-semantic-role="latinletter" data-semantic-type="identifier" size="s"><mjx-c>𝐷</mjx-c></mjx-mi></mjx-script></mjx-msub></mjx-math></mjx-container>) can be constructed by solving for eigenstates of a renormalization group (RG) operator following from the Turaev-Viro formulation of a topological field theory (topological quantum field theory) (TQFT) in <mjx-container ctxtmenu_counter="145" ctxtmenu_oldtabindex="1" jax="CHTML" overflow="linebreak" role="tree" sre-explorer- style="font-size: 100.7%;" tabindex="0"><mjx-math breakable="true" data-semantic-children="0,2" data-semantic-content="1" data-semantic- data-semantic-owns="0 1 2" data-semantic-role="addition" data-semantic-speech="upper D plus 1" data-semantic-structure="(3 0 1 2)" data-semantic-type="infixop"><mjx-mi data-semantic-annotation="clearspeak:simple" data-semantic-font="italic" data-semantic- data-semantic-parent="3" data-semantic-role="latinletter" data-semantic-type="identifier"><mjx-c>𝐷</mjx-c></mjx-mi><mjx-break size="3"></mjx-break><mjx-mo data-semantic- data-semantic-operator="infixop,+" data-semantic-parent="3" data-semantic-role="addition" data-semantic-type="operator"><mjx-c>+</mjx-c></mjx-mo><mjx-mn data-semantic-annotation="clearspeak:simple" data-semantic-font="normal" data-semantic- data-semantic-parent="3" data-semantic-role="integer" data-semantic-type="number" space="3"><mjx-c>1</mjx-c></mjx-mn></mjx-math></mjx-container> dimensions (<mjx-container ctxtmenu_counter="146" ctxtmenu_oldtabindex="1" jax="CHTML" overflow="linebreak" role="tree" sre-explorer- style="font-size: 100.7%;" tabin
我们证明,在𝐷维(CFT𝐷)上的共形场理论的路径积分可以通过求解重正化群(RG)算子的特征状态来构建,而重正化群算子的特征状态则来自于在𝐷+1维(TQFT𝐷+1)上的拓扑场理论(拓扑量子场论)的图拉耶夫-维罗(Turaev-Viro)表述,明确地实现了对称理论和TQFT之间的全息三明治关系。一般来说,与对称 TQFT𝐷 相对应的精确特征状态来自 TQFT𝐷+1 中的弗罗贝尼斯代数。对于 𝐷=2,我们构建的特征状态能精确地产生二维有理 CFT 路径积分,这奇妙地将连续场论路径积分与图拉夫-维罗状态和联系在一起。我们还设计并说明了𝐷=2, 3 的数值方法,以寻找作为对称 TQFT𝐷 之间相变点的 CFT𝐷。最后,由于RG算子实际上是一个精确的解析全息张量网络,我们计算了 "体界 "相关因子,并将它们与𝐷=2时的AdS/CFT字典进行了比较。令人欣慰的是,鉴于我们的精确度,它们在数值上是兼容的,尽管还需要进一步的工作来探索与 AdS/CFT 对应关系的精确联系。
{"title":"CFT𝐷fromTQFT𝐷+1via Holographic Tensor Network, and Precision Discretization ofCFT2","authors":"Lin Chen, Kaixin Ji, Haochen Zhang, Ce Shen, Ruoshui Wang, Xiangdong Zeng, Ling-Yan Hung","doi":"10.1103/physrevx.14.041033","DOIUrl":"https://doi.org/10.1103/physrevx.14.041033","url":null,"abstract":"We show that the path integral of conformal field theories in &lt;mjx-container ctxtmenu_counter=\"143\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" overflow=\"linebreak\" role=\"tree\" sre-explorer- style=\"font-size: 100.7%;\" tabindex=\"0\"&gt;&lt;mjx-math data-semantic-structure=\"0\"&gt;&lt;mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-role=\"latinletter\" data-semantic-speech=\"upper D\" data-semantic-type=\"identifier\"&gt;&lt;mjx-c&gt;𝐷&lt;/mjx-c&gt;&lt;/mjx-mi&gt;&lt;/mjx-math&gt;&lt;/mjx-container&gt; dimensions (&lt;mjx-container ctxtmenu_counter=\"144\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" overflow=\"linebreak\" role=\"tree\" sre-explorer- style=\"font-size: 100.7%;\" tabindex=\"0\"&gt;&lt;mjx-math data-semantic-structure=\"(2 0 1)\"&gt;&lt;mjx-msub data-semantic-children=\"0,1\" data-semantic- data-semantic-owns=\"0 1\" data-semantic-role=\"unknown\" data-semantic-speech=\"upper C upper F upper T Subscript upper D\" data-semantic-type=\"subscript\"&gt;&lt;mjx-mi data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"2\" data-semantic-role=\"unknown\" data-semantic-type=\"identifier\"&gt;&lt;mjx-c noic=\"true\" style=\"padding-top: 0.669em;\"&gt;C&lt;/mjx-c&gt;&lt;mjx-c noic=\"true\" style=\"padding-top: 0.669em;\"&gt;F&lt;/mjx-c&gt;&lt;mjx-c style=\"padding-top: 0.669em;\"&gt;T&lt;/mjx-c&gt;&lt;/mjx-mi&gt;&lt;mjx-script style=\"vertical-align: -0.15em;\"&gt;&lt;mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"2\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\" size=\"s\"&gt;&lt;mjx-c&gt;𝐷&lt;/mjx-c&gt;&lt;/mjx-mi&gt;&lt;/mjx-script&gt;&lt;/mjx-msub&gt;&lt;/mjx-math&gt;&lt;/mjx-container&gt;) can be constructed by solving for eigenstates of a renormalization group (RG) operator following from the Turaev-Viro formulation of a topological field theory (topological quantum field theory) (TQFT) in &lt;mjx-container ctxtmenu_counter=\"145\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" overflow=\"linebreak\" role=\"tree\" sre-explorer- style=\"font-size: 100.7%;\" tabindex=\"0\"&gt;&lt;mjx-math breakable=\"true\" data-semantic-children=\"0,2\" data-semantic-content=\"1\" data-semantic- data-semantic-owns=\"0 1 2\" data-semantic-role=\"addition\" data-semantic-speech=\"upper D plus 1\" data-semantic-structure=\"(3 0 1 2)\" data-semantic-type=\"infixop\"&gt;&lt;mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"3\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\"&gt;&lt;mjx-c&gt;𝐷&lt;/mjx-c&gt;&lt;/mjx-mi&gt;&lt;mjx-break size=\"3\"&gt;&lt;/mjx-break&gt;&lt;mjx-mo data-semantic- data-semantic-operator=\"infixop,+\" data-semantic-parent=\"3\" data-semantic-role=\"addition\" data-semantic-type=\"operator\"&gt;&lt;mjx-c&gt;+&lt;/mjx-c&gt;&lt;/mjx-mo&gt;&lt;mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"3\" data-semantic-role=\"integer\" data-semantic-type=\"number\" space=\"3\"&gt;&lt;mjx-c&gt;1&lt;/mjx-c&gt;&lt;/mjx-mn&gt;&lt;/mjx-math&gt;&lt;/mjx-container&gt; dimensions (&lt;mjx-container ctxtmenu_counter=\"146\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" overflow=\"linebreak\" role=\"tree\" sre-explorer- style=\"font-size: 100.7%;\" tabin","PeriodicalId":20161,"journal":{"name":"Physical Review X","volume":"1 1","pages":""},"PeriodicalIF":12.5,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142588474","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Modular Quantum Processor with an All-to-All Reconfigurable Router 带有全对全可重构路由器的模块化量子处理器
IF 12.5 1区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY Pub Date : 2024-11-04 DOI: 10.1103/physrevx.14.041030
Xuntao Wu, Haoxiong Yan, Gustav Andersson, Alexander Anferov, Ming-Han Chou, Christopher R. Conner, Joel Grebel, Yash J. Joshi, Shiheng Li, Jacob M. Miller, Rhys G. Povey, Hong Qiao, Andrew N. Cleland
Superconducting qubits provide a promising approach to large-scale fault-tolerant quantum computing. However, qubit connectivity on a planar surface is typically restricted to only a few neighboring qubits. Achieving longer-range and more flexible connectivity, which is particularly appealing in light of recent developments in error-correcting codes, however, usually involves complex multilayer packaging and external cabling, which is resource intensive and can impose fidelity limitations. Here, we propose and realize a high-speed on-chip quantum processor that supports reconfigurable all-to-all coupling with a large on-off ratio. We implement the design in a four-node quantum processor, built with a modular design comprising a wiring substrate coupled to two separate qubit-bearing substrates, each including two single-qubit nodes. We use this device to demonstrate reconfigurable controlled-<mjx-container ctxtmenu_counter="131" ctxtmenu_oldtabindex="1" jax="CHTML" overflow="linebreak" role="tree" sre-explorer- style="font-size: 100.7%;" tabindex="0"><mjx-math data-semantic-structure="0"><mjx-mi data-semantic-annotation="clearspeak:simple" data-semantic-font="italic" data-semantic- data-semantic-role="latinletter" data-semantic-speech="upper Z" data-semantic-type="identifier"><mjx-c>𝑍</mjx-c></mjx-mi></mjx-math></mjx-container> gates across all qubit pairs, with a benchmarked average fidelity of <mjx-container ctxtmenu_counter="132" ctxtmenu_oldtabindex="1" jax="CHTML" overflow="linebreak" role="tree" sre-explorer- style="font-size: 100.7%;" tabindex="0"><mjx-math data-semantic-children="0,1,5,4" data-semantic-content="1,4" data-semantic- data-semantic-owns="0 1 5 4" data-semantic-role="sequence" data-semantic-speech="96.00 percent sign plus or minus 0.08 percent sign" data-semantic-structure="(6 0 1 (5 2 3) 4)" data-semantic-type="punctuated"><mjx-mn data-semantic-annotation="clearspeak:simple" data-semantic-font="normal" data-semantic- data-semantic-parent="6" data-semantic-role="float" data-semantic-type="number"><mjx-c noic="true" style="padding-top: 0.646em;">9</mjx-c><mjx-c noic="true" style="padding-top: 0.646em;">6</mjx-c><mjx-c noic="true" style="padding-top: 0.646em;">.</mjx-c><mjx-c noic="true" style="padding-top: 0.646em;">0</mjx-c><mjx-c style="padding-top: 0.646em;">0</mjx-c></mjx-mn><mjx-mo data-semantic- data-semantic-operator="punctuated" data-semantic-parent="6" data-semantic-role="unknown" data-semantic-type="punctuation"><mjx-c>%</mjx-c></mjx-mo><mjx-mrow data-semantic-added="true" data-semantic-children="3" data-semantic-content="2" data-semantic- data-semantic-owns="2 3" data-semantic-parent="6" data-semantic-role="addition" data-semantic-type="prefixop" space="3"><mjx-mo data-semantic- data-semantic-operator="prefixop,±" data-semantic-parent="5" data-semantic-role="addition" data-semantic-type="operator"><mjx-c>±</mjx-c></mjx-mo><mjx-mn data-semantic-annotation="clearspeak:simple" data-semantic-font="normal" data-semantic-
超导量子比特为大规模容错量子计算提供了一种前景广阔的方法。然而,平面上的量子比特连接通常仅限于几个相邻的量子比特。鉴于纠错码的最新发展,实现更长距离和更灵活的连接尤其具有吸引力,但这通常涉及复杂的多层封装和外部布线,不仅耗费大量资源,而且会对保真度造成限制。在这里,我们提出并实现了一种高速片上量子处理器,它支持可重构的全对全耦合,并具有较大的通断比。我们在一个四节点量子处理器中实现了这一设计,该处理器采用模块化设计,包括一个布线基板和两个独立的量子比特承载基板,每个基板包括两个单量子比特节点。我们利用该器件演示了所有量子比特对的可重构受控𝑍门,其基准平均保真度为 96.00%±0.08%,最佳保真度为 97.14%±0.07%,主要受量子比特去相差的限制。我们还生成了分布在不同模块上的多量子比特纠缠,展示了 GHZ-3 和 GHZ-4 状态,保真度分别为 88.15%±0.24% 和 75.18%±0.11%。这种方法有望高效地扩展到更大规模的量子电路,并为实施量子算法和纠错方案提供了一条途径,这些算法和方案可从增强的量子比特连接中获益。
{"title":"Modular Quantum Processor with an All-to-All Reconfigurable Router","authors":"Xuntao Wu, Haoxiong Yan, Gustav Andersson, Alexander Anferov, Ming-Han Chou, Christopher R. Conner, Joel Grebel, Yash J. Joshi, Shiheng Li, Jacob M. Miller, Rhys G. Povey, Hong Qiao, Andrew N. Cleland","doi":"10.1103/physrevx.14.041030","DOIUrl":"https://doi.org/10.1103/physrevx.14.041030","url":null,"abstract":"Superconducting qubits provide a promising approach to large-scale fault-tolerant quantum computing. However, qubit connectivity on a planar surface is typically restricted to only a few neighboring qubits. Achieving longer-range and more flexible connectivity, which is particularly appealing in light of recent developments in error-correcting codes, however, usually involves complex multilayer packaging and external cabling, which is resource intensive and can impose fidelity limitations. Here, we propose and realize a high-speed on-chip quantum processor that supports reconfigurable all-to-all coupling with a large on-off ratio. We implement the design in a four-node quantum processor, built with a modular design comprising a wiring substrate coupled to two separate qubit-bearing substrates, each including two single-qubit nodes. We use this device to demonstrate reconfigurable controlled-&lt;mjx-container ctxtmenu_counter=\"131\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" overflow=\"linebreak\" role=\"tree\" sre-explorer- style=\"font-size: 100.7%;\" tabindex=\"0\"&gt;&lt;mjx-math data-semantic-structure=\"0\"&gt;&lt;mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-role=\"latinletter\" data-semantic-speech=\"upper Z\" data-semantic-type=\"identifier\"&gt;&lt;mjx-c&gt;𝑍&lt;/mjx-c&gt;&lt;/mjx-mi&gt;&lt;/mjx-math&gt;&lt;/mjx-container&gt; gates across all qubit pairs, with a benchmarked average fidelity of &lt;mjx-container ctxtmenu_counter=\"132\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" overflow=\"linebreak\" role=\"tree\" sre-explorer- style=\"font-size: 100.7%;\" tabindex=\"0\"&gt;&lt;mjx-math data-semantic-children=\"0,1,5,4\" data-semantic-content=\"1,4\" data-semantic- data-semantic-owns=\"0 1 5 4\" data-semantic-role=\"sequence\" data-semantic-speech=\"96.00 percent sign plus or minus 0.08 percent sign\" data-semantic-structure=\"(6 0 1 (5 2 3) 4)\" data-semantic-type=\"punctuated\"&gt;&lt;mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"6\" data-semantic-role=\"float\" data-semantic-type=\"number\"&gt;&lt;mjx-c noic=\"true\" style=\"padding-top: 0.646em;\"&gt;9&lt;/mjx-c&gt;&lt;mjx-c noic=\"true\" style=\"padding-top: 0.646em;\"&gt;6&lt;/mjx-c&gt;&lt;mjx-c noic=\"true\" style=\"padding-top: 0.646em;\"&gt;.&lt;/mjx-c&gt;&lt;mjx-c noic=\"true\" style=\"padding-top: 0.646em;\"&gt;0&lt;/mjx-c&gt;&lt;mjx-c style=\"padding-top: 0.646em;\"&gt;0&lt;/mjx-c&gt;&lt;/mjx-mn&gt;&lt;mjx-mo data-semantic- data-semantic-operator=\"punctuated\" data-semantic-parent=\"6\" data-semantic-role=\"unknown\" data-semantic-type=\"punctuation\"&gt;&lt;mjx-c&gt;%&lt;/mjx-c&gt;&lt;/mjx-mo&gt;&lt;mjx-mrow data-semantic-added=\"true\" data-semantic-children=\"3\" data-semantic-content=\"2\" data-semantic- data-semantic-owns=\"2 3\" data-semantic-parent=\"6\" data-semantic-role=\"addition\" data-semantic-type=\"prefixop\" space=\"3\"&gt;&lt;mjx-mo data-semantic- data-semantic-operator=\"prefixop,±\" data-semantic-parent=\"5\" data-semantic-role=\"addition\" data-semantic-type=\"operator\"&gt;&lt;mjx-c&gt;±&lt;/mjx-c&gt;&lt;/mjx-mo&gt;&lt;mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- ","PeriodicalId":20161,"journal":{"name":"Physical Review X","volume":"67 1","pages":""},"PeriodicalIF":12.5,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142574700","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Defining Stable Phases of Open Quantum Systems 定义开放量子系统的稳定相位
IF 12.5 1区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY Pub Date : 2024-11-04 DOI: 10.1103/physrevx.14.041031
Tibor Rakovszky, Sarang Gopalakrishnan, Curt von Keyserlingk
The steady states of dynamical processes can exhibit stable nontrivial phases, which can also serve as fault-tolerant classical or quantum memories. For Markovian quantum (classical) dynamics, these steady states are extremal eigenvectors of the non-Hermitian operators that generate the dynamics, i.e., quantum channels (Markov chains). However, since these operators are non-Hermitian, their spectra are an unreliable guide to dynamical relaxation timescales or to stability against perturbations. We propose an alternative dynamical criterion for a steady state to be in a stable phase, which we name uniformity: Informally, our criterion amounts to requiring that, under sufficiently small local perturbations of the dynamics, the unperturbed and perturbed steady states are related to one another by a finite-time dissipative evolution. We show that this criterion implies many of the properties one would want from any reasonable definition of a phase. We prove that uniformity is satisfied in a canonical classical cellular automaton, and we provide numerical evidence that the gap determines the relaxation rate between nearby steady states in the same phase, a situation we conjecture holds generically whenever uniformity is satisfied. We further conjecture some sufficient conditions for a channel to exhibit uniformity and therefore stability.
动力学过程的稳态可以表现出稳定的非三维阶段,也可以作为容错的经典或量子存储器。对于马尔可夫量子(经典)动力学,这些稳态是产生动力学的非ermitian 算子(即量子通道(马尔可夫链))的极值特征向量。然而,由于这些算子是非全息的,它们的频谱对于动态弛豫时标或对抗扰动的稳定性来说是不可靠的指导。我们提出了另一种稳态处于稳定阶段的动力学标准,并将其命名为均匀性:从形式上看,我们的标准相当于要求在足够小的局部动力学扰动下,未扰动稳态和扰动稳态通过有限时间耗散演化相互关联。我们证明,这一标准意味着相的任何合理定义所要求的许多特性。我们证明了在一个典型的经典蜂窝自动机中满足了均匀性,并提供了数值证据,证明间隙决定了同一相位中邻近稳态之间的松弛率,我们猜想只要满足了均匀性,这种情况一般都会成立。我们进一步猜想了通道表现出均匀性并因此表现出稳定性的一些充分条件。
{"title":"Defining Stable Phases of Open Quantum Systems","authors":"Tibor Rakovszky, Sarang Gopalakrishnan, Curt von Keyserlingk","doi":"10.1103/physrevx.14.041031","DOIUrl":"https://doi.org/10.1103/physrevx.14.041031","url":null,"abstract":"The steady states of dynamical processes can exhibit stable nontrivial phases, which can also serve as fault-tolerant classical or quantum memories. For Markovian quantum (classical) dynamics, these steady states are extremal eigenvectors of the non-Hermitian operators that generate the dynamics, i.e., quantum channels (Markov chains). However, since these operators are non-Hermitian, their spectra are an unreliable guide to dynamical relaxation timescales or to stability against perturbations. We propose an alternative dynamical criterion for a steady state to be in a stable phase, which we name uniformity: Informally, our criterion amounts to requiring that, under sufficiently small local perturbations of the dynamics, the unperturbed and perturbed steady states are related to one another by a finite-time dissipative evolution. We show that this criterion implies many of the properties one would want from any reasonable definition of a phase. We prove that uniformity is satisfied in a canonical classical cellular automaton, and we provide numerical evidence that the gap determines the relaxation rate between nearby steady states in the same phase, a situation we conjecture holds generically whenever uniformity is satisfied. We further conjecture some sufficient conditions for a channel to exhibit uniformity and therefore stability.","PeriodicalId":20161,"journal":{"name":"Physical Review X","volume":"90 1","pages":""},"PeriodicalIF":12.5,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142579993","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Physical Review X
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1