Pub Date : 2025-04-11DOI: 10.1103/physrevx.15.021012
Mario Krenn, Yehonathan Drori, Rana X Adhikari
Gravitational waves, detected a century after they were first theorized, are space-time distortions caused by some of the most cataclysmic events in the Universe, including black hole mergers and supernovae. The successful detection of these waves has been made possible by ingenious detectors designed by human experts. Beyond these successful designs, the vast space of experimental configurations remains largely unexplored, offering an exciting territory potentially rich in innovative and unconventional detection strategies. Here, we demonstrate an intelligent computational strategy to explore this enormous space, discovering unorthodox topologies for gravitational wave detectors that significantly outperform the currently best-known designs under realistic experimental constraints. This increases the potentially observable volume of the Universe by up to 50-fold. Moreover, by analyzing the best solutions from our superhuman algorithm, we uncover entirely new physics ideas at their core. At a bigger picture, our methodology can readily be extended to AI-driven design of experiments across wide domains of fundamental physics, opening fascinating new windows into the Universe. Published by the American Physical Society2025
{"title":"Digital Discovery of Interferometric Gravitational Wave Detectors","authors":"Mario Krenn, Yehonathan Drori, Rana X Adhikari","doi":"10.1103/physrevx.15.021012","DOIUrl":"https://doi.org/10.1103/physrevx.15.021012","url":null,"abstract":"Gravitational waves, detected a century after they were first theorized, are space-time distortions caused by some of the most cataclysmic events in the Universe, including black hole mergers and supernovae. The successful detection of these waves has been made possible by ingenious detectors designed by human experts. Beyond these successful designs, the vast space of experimental configurations remains largely unexplored, offering an exciting territory potentially rich in innovative and unconventional detection strategies. Here, we demonstrate an intelligent computational strategy to explore this enormous space, discovering unorthodox topologies for gravitational wave detectors that significantly outperform the currently best-known designs under realistic experimental constraints. This increases the potentially observable volume of the Universe by up to 50-fold. Moreover, by analyzing the best solutions from our superhuman algorithm, we uncover entirely new physics ideas at their core. At a bigger picture, our methodology can readily be extended to AI-driven design of experiments across wide domains of fundamental physics, opening fascinating new windows into the Universe. <jats:supplementary-material> <jats:copyright-statement>Published by the American Physical Society</jats:copyright-statement> <jats:copyright-year>2025</jats:copyright-year> </jats:permissions> </jats:supplementary-material>","PeriodicalId":20161,"journal":{"name":"Physical Review X","volume":"26 1","pages":""},"PeriodicalIF":12.5,"publicationDate":"2025-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143822878","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-04-11DOI: 10.1103/physrevx.15.021011
Hans K. C. Beukers, Christopher Waas, Matteo Pasini, Hendrik B. van Ommen, Zarije Ademi, Mariagrazia Iuliano, Nina Codreanu, Julia M. Brevoord, Tim Turan, Tim H. Taminiau, Ronald Hanson
Solid-state quantum registers consisting of optically active electron spins with nearby nuclear spins are promising building blocks for future quantum technologies. For electron spin-1 registers, dynamical decoupling (DD) quantum gates have been developed that enable the precise control of multiple nuclear spin qubits. However, for the important class of electron spin-1/2 systems, this control method suffers from intrinsic selectivity limitations, resulting in reduced nuclear spin gate fidelities. Here, we demonstrate improved control of single nuclear spins by an electron spin-1/2 using dynamically decoupled radio-frequency (DDRF) gates. We make use of the electron spin-1/2 of a diamond tin-vacancy center, showing high-fidelity single-qubit gates, single-shot readout, and spin coherence beyond a millisecond. The DD control is used as a benchmark to observe and control a single 31C nuclear spin. Using the DDRF control method, we demonstrate improved control on that spin. In addition, we find and control an additional nuclear spin that is insensitive to the DD control method. Using these DDRF gates, we show entanglement between the electron and the nuclear spin with 72(3)% state fidelity. Our extensive simulations indicate that DDRF gate fidelities well in excess are feasible. Finally, we employ time-resolved photon detection during readout to quantify the hyperfine coupling for the electron’s optically excited state. Our work provides key insights into the challenges and opportunities for nuclear spin control in electron spin-1/2 systems, opening the door to multiqubit experiments on these promising qubit platforms. Published by the American Physical Society2025
{"title":"Control of Solid-State Nuclear Spin Qubits Using an Electron Spin- 1/2","authors":"Hans K. C. Beukers, Christopher Waas, Matteo Pasini, Hendrik B. van Ommen, Zarije Ademi, Mariagrazia Iuliano, Nina Codreanu, Julia M. Brevoord, Tim Turan, Tim H. Taminiau, Ronald Hanson","doi":"10.1103/physrevx.15.021011","DOIUrl":"https://doi.org/10.1103/physrevx.15.021011","url":null,"abstract":"Solid-state quantum registers consisting of optically active electron spins with nearby nuclear spins are promising building blocks for future quantum technologies. For electron spin-1 registers, dynamical decoupling (DD) quantum gates have been developed that enable the precise control of multiple nuclear spin qubits. However, for the important class of electron spin-1</a:mn>/</a:mo>2</a:mn></a:mrow></a:math> systems, this control method suffers from intrinsic selectivity limitations, resulting in reduced nuclear spin gate fidelities. Here, we demonstrate improved control of single nuclear spins by an electron spin-<c:math xmlns:c=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><c:mrow><c:mn>1</c:mn><c:mo>/</c:mo><c:mn>2</c:mn></c:mrow></c:math> using dynamically decoupled radio-frequency (DDRF) gates. We make use of the electron spin-<e:math xmlns:e=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><e:mrow><e:mn>1</e:mn><e:mo>/</e:mo><e:mn>2</e:mn></e:mrow></e:math> of a diamond tin-vacancy center, showing high-fidelity single-qubit gates, single-shot readout, and spin coherence beyond a millisecond. The DD control is used as a benchmark to observe and control a single <g:math xmlns:g=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><g:mrow><g:mmultiscripts><g:mrow><g:mn>3</g:mn></g:mrow><g:mprescripts/><g:none/><g:mrow><g:mn>1</g:mn></g:mrow></g:mmultiscripts><g:mi mathvariant=\"normal\">C</g:mi></g:mrow></g:math> nuclear spin. Using the DDRF control method, we demonstrate improved control on that spin. In addition, we find and control an additional nuclear spin that is insensitive to the DD control method. Using these DDRF gates, we show entanglement between the electron and the nuclear spin with 72(3)% state fidelity. Our extensive simulations indicate that DDRF gate fidelities well in excess are feasible. Finally, we employ time-resolved photon detection during readout to quantify the hyperfine coupling for the electron’s optically excited state. Our work provides key insights into the challenges and opportunities for nuclear spin control in electron spin-<j:math xmlns:j=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><j:mrow><j:mn>1</j:mn><j:mo>/</j:mo><j:mn>2</j:mn></j:mrow></j:math> systems, opening the door to multiqubit experiments on these promising qubit platforms. <jats:supplementary-material> <jats:copyright-statement>Published by the American Physical Society</jats:copyright-statement> <jats:copyright-year>2025</jats:copyright-year> </jats:permissions> </jats:supplementary-material>","PeriodicalId":20161,"journal":{"name":"Physical Review X","volume":"183 1","pages":""},"PeriodicalIF":12.5,"publicationDate":"2025-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143822879","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-04-10DOI: 10.1103/physrevx.15.021010
Anne Missiaen, Hadrien Mayaffre, Steffen Krämer, Dan Zhao, Yanbing Zhou, Tao Wu, Xianhui Chen, Sunseng Pyon, Tomohiro Takayama, Hidenori Takagi, David LeBoeuf, Marc-Henri Julien
Although spin and charge stripes in high-T</a:mi>c</a:mi></a:msub></a:math> cuprates have been extensively studied, the exact range of carrier concentration over which they form a static order remains uncertain, complicating efforts to understand their significance. The problem is challenging due to the combined effects of quenched disorder and competition with superconductivity—both significant in cuprates—which add to the inherent difficulty of determining phase boundaries. In <c:math xmlns:c="http://www.w3.org/1998/Math/MathML" display="inline"><c:mrow><c:msub><c:mrow><c:mi>La</c:mi></c:mrow><c:mrow><c:mn>2</c:mn><c:mo>−</c:mo><c:mi>x</c:mi></c:mrow></c:msub><c:mrow><c:msub><c:mrow><c:mi>Sr</c:mi></c:mrow><c:mrow><c:mi>x</c:mi></c:mrow></c:msub></c:mrow><c:mrow><c:msub><c:mrow><c:mi>CuO</c:mi></c:mrow><c:mrow><c:mn>4</c:mn></c:mrow></c:msub></c:mrow></c:mrow></c:math> (LSCO) and in zero external magnetic field, static spin stripes are confined to a doping range well below <e:math xmlns:e="http://www.w3.org/1998/Math/MathML" display="inline"><e:msup><e:mi>p</e:mi><e:mo>*</e:mo></e:msup></e:math>, the pseudogap boundary at zero temperature. However, when high fields suppress the competing effect of superconductivity, spin-stripe order is found to extend up to <g:math xmlns:g="http://www.w3.org/1998/Math/MathML" display="inline"><g:msup><g:mi>p</g:mi><g:mo>*</g:mo></g:msup></g:math>. Here, we investigate <i:math xmlns:i="http://www.w3.org/1998/Math/MathML" display="inline"><i:mrow><i:msub><i:mrow><i:mi>La</i:mi></i:mrow><i:mrow><i:mn>1.8</i:mn><i:mo>−</i:mo><i:mi>x</i:mi></i:mrow></i:msub><i:mrow><i:msub><i:mrow><i:mi>Eu</i:mi></i:mrow><i:mrow><i:mn>0.2</i:mn></i:mrow></i:msub></i:mrow><i:mrow><i:msub><i:mrow><i:mi>Sr</i:mi></i:mrow><i:mrow><i:mi>x</i:mi></i:mrow></i:msub></i:mrow><i:mrow><i:msub><i:mrow><i:mi>CuO</i:mi></i:mrow><i:mrow><i:mn>4</i:mn></i:mrow></i:msub></i:mrow></i:mrow></i:math> (Eu-LSCO) using <k:math xmlns:k="http://www.w3.org/1998/Math/MathML" display="inline"><k:mrow><k:mmultiscripts><k:mrow><k:mi>La</k:mi></k:mrow><k:mprescripts/><k:none/><k:mrow><k:mn>139</k:mn></k:mrow></k:mmultiscripts></k:mrow></k:math> nuclear magnetic resonance and observe field-dependent spin fluctuations suggesting a similar competition between superconductivity and spin order as in LSCO. Nevertheless, we find that static spin stripes are present practically up to <m:math xmlns:m="http://www.w3.org/1998/Math/MathML" display="inline"><m:msup><m:mi>p</m:mi><m:mo>*</m:mo></m:msup></m:math> irrespective of field strength: The stronger stripe order in Eu-LSCO prevents superconductivity from enforcing a nonmagnetic ground state, except very close to <o:math xmlns:o="http://www.w3.org/1998/Math/MathML" display="inline"><o:msup><o:mi>p</o:mi><o:mo>*</o:mo></o:msup></o:math>. Thus, spin-stripe order is consistently bounded by <q:math xmlns:q="http://www.w3.org/1998/Math/MathML" display="inline"><q:msup><q:mi>p</q:mi><q:mo>*</q:mo></q:msup></q:math> in both LS
{"title":"Spin-Stripe Order Tied to the Pseudogap Phase in La1.8−xEu0.2SrxCuO4","authors":"Anne Missiaen, Hadrien Mayaffre, Steffen Krämer, Dan Zhao, Yanbing Zhou, Tao Wu, Xianhui Chen, Sunseng Pyon, Tomohiro Takayama, Hidenori Takagi, David LeBoeuf, Marc-Henri Julien","doi":"10.1103/physrevx.15.021010","DOIUrl":"https://doi.org/10.1103/physrevx.15.021010","url":null,"abstract":"Although spin and charge stripes in high-T</a:mi>c</a:mi></a:msub></a:math> cuprates have been extensively studied, the exact range of carrier concentration over which they form a static order remains uncertain, complicating efforts to understand their significance. The problem is challenging due to the combined effects of quenched disorder and competition with superconductivity—both significant in cuprates—which add to the inherent difficulty of determining phase boundaries. In <c:math xmlns:c=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><c:mrow><c:msub><c:mrow><c:mi>La</c:mi></c:mrow><c:mrow><c:mn>2</c:mn><c:mo>−</c:mo><c:mi>x</c:mi></c:mrow></c:msub><c:mrow><c:msub><c:mrow><c:mi>Sr</c:mi></c:mrow><c:mrow><c:mi>x</c:mi></c:mrow></c:msub></c:mrow><c:mrow><c:msub><c:mrow><c:mi>CuO</c:mi></c:mrow><c:mrow><c:mn>4</c:mn></c:mrow></c:msub></c:mrow></c:mrow></c:math> (LSCO) and in zero external magnetic field, static spin stripes are confined to a doping range well below <e:math xmlns:e=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><e:msup><e:mi>p</e:mi><e:mo>*</e:mo></e:msup></e:math>, the pseudogap boundary at zero temperature. However, when high fields suppress the competing effect of superconductivity, spin-stripe order is found to extend up to <g:math xmlns:g=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><g:msup><g:mi>p</g:mi><g:mo>*</g:mo></g:msup></g:math>. Here, we investigate <i:math xmlns:i=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><i:mrow><i:msub><i:mrow><i:mi>La</i:mi></i:mrow><i:mrow><i:mn>1.8</i:mn><i:mo>−</i:mo><i:mi>x</i:mi></i:mrow></i:msub><i:mrow><i:msub><i:mrow><i:mi>Eu</i:mi></i:mrow><i:mrow><i:mn>0.2</i:mn></i:mrow></i:msub></i:mrow><i:mrow><i:msub><i:mrow><i:mi>Sr</i:mi></i:mrow><i:mrow><i:mi>x</i:mi></i:mrow></i:msub></i:mrow><i:mrow><i:msub><i:mrow><i:mi>CuO</i:mi></i:mrow><i:mrow><i:mn>4</i:mn></i:mrow></i:msub></i:mrow></i:mrow></i:math> (Eu-LSCO) using <k:math xmlns:k=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><k:mrow><k:mmultiscripts><k:mrow><k:mi>La</k:mi></k:mrow><k:mprescripts/><k:none/><k:mrow><k:mn>139</k:mn></k:mrow></k:mmultiscripts></k:mrow></k:math> nuclear magnetic resonance and observe field-dependent spin fluctuations suggesting a similar competition between superconductivity and spin order as in LSCO. Nevertheless, we find that static spin stripes are present practically up to <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><m:msup><m:mi>p</m:mi><m:mo>*</m:mo></m:msup></m:math> irrespective of field strength: The stronger stripe order in Eu-LSCO prevents superconductivity from enforcing a nonmagnetic ground state, except very close to <o:math xmlns:o=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><o:msup><o:mi>p</o:mi><o:mo>*</o:mo></o:msup></o:math>. Thus, spin-stripe order is consistently bounded by <q:math xmlns:q=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><q:msup><q:mi>p</q:mi><q:mo>*</q:mo></q:msup></q:math> in both LS","PeriodicalId":20161,"journal":{"name":"Physical Review X","volume":"108 1","pages":""},"PeriodicalIF":12.5,"publicationDate":"2025-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143819444","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-04-08DOI: 10.1103/physrevx.15.021008
Enkang Zhang, Di Peng, Yinghao Zhu, Lixing Chen, Bingkun Cui, Xingya Wang, Wenbin Wang, Qiaoshi Zeng, Jun Zhao
The discovery of superconductivity in pressurized bilayer and trilayer nickelates has generated significant interest. However, their superconducting properties are often dependent on sample quality and pressure conditions, complicating the interpretation of the underlying physics. Finding new systems with optimized bulk superconducting properties is therefore important for advancing our understanding of these materials. Unlike cuprates, where trilayer compounds typically exhibit the highest transition temperature (T</a:mi>c</a:mi></a:msub></a:mrow></a:math>), the bilayer nickelate <c:math xmlns:c="http://www.w3.org/1998/Math/MathML" display="inline"><c:mrow><c:msub><c:mrow><c:mi>La</c:mi></c:mrow><c:mrow><c:mn>3</c:mn></c:mrow></c:msub><c:msub><c:mrow><c:mi>Ni</c:mi></c:mrow><c:mrow><c:mn>2</c:mn></c:mrow></c:msub><c:msub><c:mrow><c:mi mathvariant="normal">O</c:mi></c:mrow><c:mrow><c:mn>7</c:mn></c:mrow></c:msub></c:mrow></c:math> has thus far outperformed the trilayer <f:math xmlns:f="http://www.w3.org/1998/Math/MathML" display="inline"><f:mrow><f:msub><f:mrow><f:mi>La</f:mi></f:mrow><f:mrow><f:mn>4</f:mn></f:mrow></f:msub><f:msub><f:mrow><f:mi>Ni</f:mi></f:mrow><f:mrow><f:mn>3</f:mn></f:mrow></f:msub><f:msub><f:mrow><f:mi mathvariant="normal">O</f:mi></f:mrow><f:mrow><f:mn>1</f:mn><f:mn>0</f:mn></f:mrow></f:msub></f:mrow></f:math> in reported <i:math xmlns:i="http://www.w3.org/1998/Math/MathML" display="inline"><i:mrow><i:msub><i:mi>T</i:mi><i:mi>c</i:mi></i:msub></i:mrow></i:math>. Whether the trilayer nickelates have achieved the optimal <k:math xmlns:k="http://www.w3.org/1998/Math/MathML" display="inline"><k:mrow><k:msub><k:mi>T</k:mi><k:mi>c</k:mi></k:msub></k:mrow></k:math> remains unclear, with various scenarios suggesting different possibilities. Here, we report the discovery of bulk superconductivity in pressurized <m:math xmlns:m="http://www.w3.org/1998/Math/MathML" display="inline"><m:mrow><m:msub><m:mrow><m:mi>Pr</m:mi></m:mrow><m:mrow><m:mn>4</m:mn></m:mrow></m:msub><m:msub><m:mrow><m:mi>Ni</m:mi></m:mrow><m:mrow><m:mn>3</m:mn></m:mrow></m:msub><m:msub><m:mrow><m:mi mathvariant="normal">O</m:mi></m:mrow><m:mrow><m:mn>10</m:mn></m:mrow></m:msub></m:mrow></m:math> single crystals, achieving a maximum onset <p:math xmlns:p="http://www.w3.org/1998/Math/MathML" display="inline"><p:mrow><p:msub><p:mi>T</p:mi><p:mi>c</p:mi></p:msub></p:mrow></p:math> of 40.5 K at 80.1 GPa, significantly exceeding the 30 K observed in <r:math xmlns:r="http://www.w3.org/1998/Math/MathML" display="inline"><r:mrow><r:msub><r:mrow><r:mi>La</r:mi></r:mrow><r:mrow><r:mn>4</r:mn></r:mrow></r:msub><r:msub><r:mrow><r:mi>Ni</r:mi></r:mrow><r:mrow><r:mn>3</r:mn></r:mrow></r:msub><r:msub><r:mrow><r:mi mathvariant="normal">O</r:mi></r:mrow><r:mrow><r:mn>1</r:mn><r:mn>0</r:mn></r:mrow></r:msub></r:mrow></r:math>. The bulk nature of superconductivity is confirmed by zero resistance and a strong diamagnetic response below <u:math xmlns:u="http://www.w3.org/1998/Math/MathML
{"title":"Bulk Superconductivity in Pressurized Trilayer Nickelate Pr4Ni3O10 Single Crystals","authors":"Enkang Zhang, Di Peng, Yinghao Zhu, Lixing Chen, Bingkun Cui, Xingya Wang, Wenbin Wang, Qiaoshi Zeng, Jun Zhao","doi":"10.1103/physrevx.15.021008","DOIUrl":"https://doi.org/10.1103/physrevx.15.021008","url":null,"abstract":"The discovery of superconductivity in pressurized bilayer and trilayer nickelates has generated significant interest. However, their superconducting properties are often dependent on sample quality and pressure conditions, complicating the interpretation of the underlying physics. Finding new systems with optimized bulk superconducting properties is therefore important for advancing our understanding of these materials. Unlike cuprates, where trilayer compounds typically exhibit the highest transition temperature (T</a:mi>c</a:mi></a:msub></a:mrow></a:math>), the bilayer nickelate <c:math xmlns:c=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><c:mrow><c:msub><c:mrow><c:mi>La</c:mi></c:mrow><c:mrow><c:mn>3</c:mn></c:mrow></c:msub><c:msub><c:mrow><c:mi>Ni</c:mi></c:mrow><c:mrow><c:mn>2</c:mn></c:mrow></c:msub><c:msub><c:mrow><c:mi mathvariant=\"normal\">O</c:mi></c:mrow><c:mrow><c:mn>7</c:mn></c:mrow></c:msub></c:mrow></c:math> has thus far outperformed the trilayer <f:math xmlns:f=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><f:mrow><f:msub><f:mrow><f:mi>La</f:mi></f:mrow><f:mrow><f:mn>4</f:mn></f:mrow></f:msub><f:msub><f:mrow><f:mi>Ni</f:mi></f:mrow><f:mrow><f:mn>3</f:mn></f:mrow></f:msub><f:msub><f:mrow><f:mi mathvariant=\"normal\">O</f:mi></f:mrow><f:mrow><f:mn>1</f:mn><f:mn>0</f:mn></f:mrow></f:msub></f:mrow></f:math> in reported <i:math xmlns:i=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><i:mrow><i:msub><i:mi>T</i:mi><i:mi>c</i:mi></i:msub></i:mrow></i:math>. Whether the trilayer nickelates have achieved the optimal <k:math xmlns:k=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><k:mrow><k:msub><k:mi>T</k:mi><k:mi>c</k:mi></k:msub></k:mrow></k:math> remains unclear, with various scenarios suggesting different possibilities. Here, we report the discovery of bulk superconductivity in pressurized <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><m:mrow><m:msub><m:mrow><m:mi>Pr</m:mi></m:mrow><m:mrow><m:mn>4</m:mn></m:mrow></m:msub><m:msub><m:mrow><m:mi>Ni</m:mi></m:mrow><m:mrow><m:mn>3</m:mn></m:mrow></m:msub><m:msub><m:mrow><m:mi mathvariant=\"normal\">O</m:mi></m:mrow><m:mrow><m:mn>10</m:mn></m:mrow></m:msub></m:mrow></m:math> single crystals, achieving a maximum onset <p:math xmlns:p=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><p:mrow><p:msub><p:mi>T</p:mi><p:mi>c</p:mi></p:msub></p:mrow></p:math> of 40.5 K at 80.1 GPa, significantly exceeding the 30 K observed in <r:math xmlns:r=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><r:mrow><r:msub><r:mrow><r:mi>La</r:mi></r:mrow><r:mrow><r:mn>4</r:mn></r:mrow></r:msub><r:msub><r:mrow><r:mi>Ni</r:mi></r:mrow><r:mrow><r:mn>3</r:mn></r:mrow></r:msub><r:msub><r:mrow><r:mi mathvariant=\"normal\">O</r:mi></r:mrow><r:mrow><r:mn>1</r:mn><r:mn>0</r:mn></r:mrow></r:msub></r:mrow></r:math>. The bulk nature of superconductivity is confirmed by zero resistance and a strong diamagnetic response below <u:math xmlns:u=\"http://www.w3.org/1998/Math/MathML","PeriodicalId":20161,"journal":{"name":"Physical Review X","volume":"59 1","pages":""},"PeriodicalIF":12.5,"publicationDate":"2025-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143805718","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-04-08DOI: 10.1103/physrevx.15.021009
Saswata Roy, Alen Senanian, Christopher S. Wang, Owen C. Wetherbee, Luojia Zhang, B. Cole, C. P. Larson, E. Yelton, Kartikeya Arora, Peter L. McMahon, B. L. T. Plourde, Baptiste Royer, Valla Fatemi
Spins and oscillators are foundational to much of physics and applied sciences. For quantum information, a spin 1/2 exemplifies the most basic unit, a qubit. High angular momentum spins (HAMSs) and harmonic oscillators provide multilevel manifolds which have the potential for hardware-efficient protected encodings of quantum information and simulation of many-body quantum systems. In this work, we demonstrate a new quantum control protocol that conceptually merges these disparate hardware platforms. Namely, we show how to modify a harmonic oscillator on demand to implement a continuous range of generators to accomplish linear and nonlinear HAMS dynamics. The spinlike dynamics are verified by demonstration of linear spin coherent [SU(2)] rotations, nonlinear spin rotations, and comparison to other manifolds like simply truncated oscillators. Our scheme allows universal control of a spin cat logical qubit encoding with interpretable drive pulses: We use linear operations to accomplish four logical gates and further show that nonlinear spin rotations can complete the logical gate set. Our results show how motion on a closed Hilbert space can be useful for quantum information processing and opens the door to superconducting circuit simulations of higher angular momentum quantum magnetism. Published by the American Physical Society2025
{"title":"Synthetic High Angular Momentum Spin Dynamics in a Microwave Oscillator","authors":"Saswata Roy, Alen Senanian, Christopher S. Wang, Owen C. Wetherbee, Luojia Zhang, B. Cole, C. P. Larson, E. Yelton, Kartikeya Arora, Peter L. McMahon, B. L. T. Plourde, Baptiste Royer, Valla Fatemi","doi":"10.1103/physrevx.15.021009","DOIUrl":"https://doi.org/10.1103/physrevx.15.021009","url":null,"abstract":"Spins and oscillators are foundational to much of physics and applied sciences. For quantum information, a spin 1</a:mn>/</a:mo>2</a:mn></a:mrow></a:math> exemplifies the most basic unit, a qubit. High angular momentum spins (HAMSs) and harmonic oscillators provide multilevel manifolds which have the potential for hardware-efficient protected encodings of quantum information and simulation of many-body quantum systems. In this work, we demonstrate a new quantum control protocol that conceptually merges these disparate hardware platforms. Namely, we show how to modify a harmonic oscillator on demand to implement a continuous range of generators to accomplish linear and nonlinear HAMS dynamics. The spinlike dynamics are verified by demonstration of linear spin coherent [SU(2)] rotations, nonlinear spin rotations, and comparison to other manifolds like simply truncated oscillators. Our scheme allows universal control of a spin cat logical qubit encoding with interpretable drive pulses: We use linear operations to accomplish four logical gates and further show that nonlinear spin rotations can complete the logical gate set. Our results show how motion on a closed Hilbert space can be useful for quantum information processing and opens the door to superconducting circuit simulations of higher angular momentum quantum magnetism. <jats:supplementary-material> <jats:copyright-statement>Published by the American Physical Society</jats:copyright-statement> <jats:copyright-year>2025</jats:copyright-year> </jats:permissions> </jats:supplementary-material>","PeriodicalId":20161,"journal":{"name":"Physical Review X","volume":"38 1","pages":""},"PeriodicalIF":12.5,"publicationDate":"2025-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143805734","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-04-08DOI: 10.1103/physrevx.15.021004
Noah Shofer, Leon Zaporski, Martin Hayhurst Appel, Santanu Manna, Saimon Covre da Silva, Alexander Ghorbal, Urs Haeusler, Armando Rastelli, Claire Le Gall, Michał Gawełczyk, Mete Atatüre, Dorian A. Gangloff
A central spin qubit interacting coherently with an ensemble of proximal spins can be used to engineer entangled collective states or a multiqubit register. Making full use of this many-body platform requires tuning the interaction between the central spin and its spin register. GaAs quantum dots offer a model realization of the central spin system where an electron qubit interacts with multiple ensembles of ∼104 nuclear spins. In this work, we demonstrate tuning of the interaction between the electron qubit and the nuclear many-body system in a GaAs quantum dot. The homogeneity of the GaAs system allows us to perform high-precision and isotopically selective nuclear sideband spectroscopy, which reveals the single-nucleus electronic Knight field. Together with time-resolved spectroscopy of the nuclear field, this fully characterizes the electron-nuclear interaction for control. An algorithmic feedback sequence selects the nuclear polarization precisely, which adjusts the electron-nuclear exchange interaction via the electronic g-factor anisotropy. This allows us to tune directly the activation rate of a collective nuclear excitation (magnon) and the coherence time of the electron qubit. Our method is applicable to similar central-spin systems and enables the programmable tuning of coherent interactions in the many-body regime. Published by the American Physical Society2025
中心自旋量子比特与近端自旋集合的相干相互作用可用于设计纠缠集合态或多量子比特寄存器。要充分利用这一多体平台,需要调整中心自旋与其自旋寄存器之间的相互作用。砷化镓量子点提供了一个中心自旋系统的实现模型,在这个模型中,电子量子比特与 ∼104 核自旋的多个集合体相互作用。在这项工作中,我们展示了如何调整砷化镓量子点中电子量子比特与核多体系统之间的相互作用。砷化镓系统的均匀性使我们能够进行高精度和同位素选择性核边带光谱分析,从而揭示单核电子骑士场。结合核场的时间分辨光谱分析,可以全面描述电子-核相互作用的控制特征。算法反馈序列精确选择核极化,通过电子 g 因子各向异性调整电子-核交换相互作用。这样,我们就可以直接调整集体核激发(磁子)的激活率和电子四比特的相干时间。我们的方法适用于类似的中心自旋系统,并能在多体机制中对相干相互作用进行可编程调谐。 美国物理学会出版 2025
{"title":"Tuning the Coherent Interaction of an Electron Qubit and a Nuclear Magnon","authors":"Noah Shofer, Leon Zaporski, Martin Hayhurst Appel, Santanu Manna, Saimon Covre da Silva, Alexander Ghorbal, Urs Haeusler, Armando Rastelli, Claire Le Gall, Michał Gawełczyk, Mete Atatüre, Dorian A. Gangloff","doi":"10.1103/physrevx.15.021004","DOIUrl":"https://doi.org/10.1103/physrevx.15.021004","url":null,"abstract":"A central spin qubit interacting coherently with an ensemble of proximal spins can be used to engineer entangled collective states or a multiqubit register. Making full use of this many-body platform requires tuning the interaction between the central spin and its spin register. GaAs quantum dots offer a model realization of the central spin system where an electron qubit interacts with multiple ensembles of ∼</a:mo>10</a:mn>4</a:mn></a:msup></a:math> nuclear spins. In this work, we demonstrate tuning of the interaction between the electron qubit and the nuclear many-body system in a GaAs quantum dot. The homogeneity of the GaAs system allows us to perform high-precision and isotopically selective nuclear sideband spectroscopy, which reveals the single-nucleus electronic Knight field. Together with time-resolved spectroscopy of the nuclear field, this fully characterizes the electron-nuclear interaction for control. An algorithmic feedback sequence selects the nuclear polarization precisely, which adjusts the electron-nuclear exchange interaction via the electronic <c:math xmlns:c=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><c:mrow><c:mi>g</c:mi></c:mrow></c:math>-factor anisotropy. This allows us to tune directly the activation rate of a collective nuclear excitation (magnon) and the coherence time of the electron qubit. Our method is applicable to similar central-spin systems and enables the programmable tuning of coherent interactions in the many-body regime. <jats:supplementary-material> <jats:copyright-statement>Published by the American Physical Society</jats:copyright-statement> <jats:copyright-year>2025</jats:copyright-year> </jats:permissions> </jats:supplementary-material>","PeriodicalId":20161,"journal":{"name":"Physical Review X","volume":"74 1","pages":""},"PeriodicalIF":12.5,"publicationDate":"2025-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143805733","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-04-07DOI: 10.1103/physrevx.15.021007
Nicolas Lobato-Dauzier, Ananyo Maitra, André Estevez-Torres, Jean-Christophe Galas
Couplings between biochemical and mechanical processes have a profound impact on embryonic development. However, studies capable of quantifying these interactions have remained elusive. Here, we investigate a synthetic system where a DNA reaction-diffusion (RD) front is advected by a turbulent flow generated by active matter (AM) flows in a quasi-one-dimensional geometry. Whereas the dynamics of simple RD fronts solely depend on the reaction and diffusion rates, we show that RD-AM front propagation is also influenced by the confinement geometry. We first experimentally dissected the different components of the reaction-diffusion-advection process by knocking out reaction or advection and observe how RD-AM allows for faster transport over large distances, avoiding dilution. We then show how confinement impacts active matter flow: While changes in instantaneous flow velocities are small, correlation times are dramatically increased with decreasing confinement. As a result, RD-AM front speed increases up to eightfold compared to an RD one, in quantitative agreement with a conveyor-belt reaction-diffusion-advection theoretical model. The RD-AM experimental system described here provides a framework for the rational engineering of complex spatiotemporal processes observed in living systems. It will reinforce our understanding of how macro-scale patterns and structures emerge from microscopic components in nonequilibrium systems. Published by the American Physical Society2025
{"title":"Confinement Determines Transport of a Reaction-Diffusion Active Matter Front","authors":"Nicolas Lobato-Dauzier, Ananyo Maitra, André Estevez-Torres, Jean-Christophe Galas","doi":"10.1103/physrevx.15.021007","DOIUrl":"https://doi.org/10.1103/physrevx.15.021007","url":null,"abstract":"Couplings between biochemical and mechanical processes have a profound impact on embryonic development. However, studies capable of quantifying these interactions have remained elusive. Here, we investigate a synthetic system where a DNA reaction-diffusion (RD) front is advected by a turbulent flow generated by active matter (AM) flows in a quasi-one-dimensional geometry. Whereas the dynamics of simple RD fronts solely depend on the reaction and diffusion rates, we show that RD-AM front propagation is also influenced by the confinement geometry. We first experimentally dissected the different components of the reaction-diffusion-advection process by knocking out reaction or advection and observe how RD-AM allows for faster transport over large distances, avoiding dilution. We then show how confinement impacts active matter flow: While changes in instantaneous flow velocities are small, correlation times are dramatically increased with decreasing confinement. As a result, RD-AM front speed increases up to eightfold compared to an RD one, in quantitative agreement with a conveyor-belt reaction-diffusion-advection theoretical model. The RD-AM experimental system described here provides a framework for the rational engineering of complex spatiotemporal processes observed in living systems. It will reinforce our understanding of how macro-scale patterns and structures emerge from microscopic components in nonequilibrium systems. <jats:supplementary-material> <jats:copyright-statement>Published by the American Physical Society</jats:copyright-statement> <jats:copyright-year>2025</jats:copyright-year> </jats:permissions> </jats:supplementary-material>","PeriodicalId":20161,"journal":{"name":"Physical Review X","volume":"72 1","pages":""},"PeriodicalIF":12.5,"publicationDate":"2025-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143797608","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-04-07DOI: 10.1103/physrevx.15.021006
Vincent Bertin, Alexandros Oratis, Jacco H. Snoeijer
The adhesion between dry solid surfaces is typically governed by contact forces, involving surface forces and elasticity. For surfaces immersed in a fluid, out-of-contact adhesion arises due to the viscous resistance to the opening of the liquid gap. While the adhesion between dry solids is described by the classical Johnson-Kendall-Roberts (JKR) theory, there is no equivalent framework for the wet adhesion of soft solids. Here, we investigate theoretically the viscous adhesion emerging during the separation of a sphere from an elastic substrate. The suction pressure within the thin viscous film between the solids induces significant elastic displacements. Unexpectedly, the elastic substrate closely follows the motion of the sphere, leading to a sticking without contact. The initial dynamics is described using similarity solutions, resulting in a nonlinear adhesion force that grows in time as F∝t2/3. When elastic displacements become large enough, another similarity solution emerges that leads to a violent snap-off of the adhesive contact through a finite-time singularity. The observed phenomenology bears a strong resemblance with JKR theory and is relevant for a wide range of applications involving viscous adhesion. Published by the American Physical Society2025
{"title":"Sticking without Contact: Elastohydrodynamic Adhesion","authors":"Vincent Bertin, Alexandros Oratis, Jacco H. Snoeijer","doi":"10.1103/physrevx.15.021006","DOIUrl":"https://doi.org/10.1103/physrevx.15.021006","url":null,"abstract":"The adhesion between dry solid surfaces is typically governed by contact forces, involving surface forces and elasticity. For surfaces immersed in a fluid, out-of-contact adhesion arises due to the viscous resistance to the opening of the liquid gap. While the adhesion between dry solids is described by the classical Johnson-Kendall-Roberts (JKR) theory, there is no equivalent framework for the wet adhesion of soft solids. Here, we investigate theoretically the viscous adhesion emerging during the separation of a sphere from an elastic substrate. The suction pressure within the thin viscous film between the solids induces significant elastic displacements. Unexpectedly, the elastic substrate closely follows the motion of the sphere, leading to a sticking without contact. The initial dynamics is described using similarity solutions, resulting in a nonlinear adhesion force that grows in time as F</a:mi>∝</a:mo>t</a:mi>2</a:mn>/</a:mo>3</a:mn></a:mrow></a:msup></a:math>. When elastic displacements become large enough, another similarity solution emerges that leads to a violent snap-off of the adhesive contact through a finite-time singularity. The observed phenomenology bears a strong resemblance with JKR theory and is relevant for a wide range of applications involving viscous adhesion. <jats:supplementary-material> <jats:copyright-statement>Published by the American Physical Society</jats:copyright-statement> <jats:copyright-year>2025</jats:copyright-year> </jats:permissions> </jats:supplementary-material>","PeriodicalId":20161,"journal":{"name":"Physical Review X","volume":"22 1","pages":""},"PeriodicalIF":12.5,"publicationDate":"2025-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143797609","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Nickelate superconductors have attracted a great deal of attention over the past few decades due to their similar crystal and electronic structures with high-temperature cuprate superconductors. Here, we report superconductivity in a pressurized Ruddlesden-Popper phase single crystal La4Ni3O10(n=3) and its interplay with the density wave order in the phase diagram. With increasing pressure, the density wave order, as indicated by the anomaly in the resistivity, is progressively suppressed, followed by the emergence of superconductivity around 25 K under the I4/mmm space group. The susceptibility measurements confirm bulk superconductivity with a volume fraction exceeding 80%. Moreover, theoretical analysis unveils that antiferromagnetic superexchange interactions can serve as the effective pairing interaction for the emergence of superconductivity in pressurized La4Ni3O10. Our research provides a new platform for the investigation of the unconventional superconductivity mechanism in Ruddlesden-Popper trilayer perovskite nickelates. Published by the American Physical Society2025
{"title":"Superconductivity in Trilayer Nickelate La4Ni3O10 under Pressure","authors":"Mingxin Zhang, Cuiying Pei, Di Peng, Xian Du, Weixiong Hu, Yantao Cao, Qi Wang, Juefei Wu, Yidian Li, Huanyu Liu, Chenhaoping Wen, Jing Song, Yi Zhao, Changhua Li, Weizheng Cao, Shihao Zhu, Qing Zhang, Na Yu, Peihong Cheng, Lili Zhang, Zhiwei Li, Jinkui Zhao, Yulin Chen, Changqing Jin, Hanjie Guo, Congjun Wu, Fan Yang, Qiaoshi Zeng, Shichao Yan, Lexian Yang, Yanpeng Qi","doi":"10.1103/physrevx.15.021005","DOIUrl":"https://doi.org/10.1103/physrevx.15.021005","url":null,"abstract":"Nickelate superconductors have attracted a great deal of attention over the past few decades due to their similar crystal and electronic structures with high-temperature cuprate superconductors. Here, we report superconductivity in a pressurized Ruddlesden-Popper phase single crystal La</a:mi></a:mrow>4</a:mn></a:mrow></a:msub>Ni</a:mi></a:mrow>3</a:mn></a:mrow></a:msub>O</a:mi></a:mrow>10</a:mn></a:mrow></a:msub>(</a:mo>n</a:mi>=</a:mo>3</a:mn>)</a:mo></a:mrow></a:math> and its interplay with the density wave order in the phase diagram. With increasing pressure, the density wave order, as indicated by the anomaly in the resistivity, is progressively suppressed, followed by the emergence of superconductivity around 25 K under the <f:math xmlns:f=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><f:mrow><f:mi>I</f:mi><f:mn>4</f:mn><f:mo>/</f:mo><f:mi>m</f:mi><f:mi>m</f:mi><f:mi>m</f:mi></f:mrow></f:math> space group. The susceptibility measurements confirm bulk superconductivity with a volume fraction exceeding 80%. Moreover, theoretical analysis unveils that antiferromagnetic superexchange interactions can serve as the effective pairing interaction for the emergence of superconductivity in pressurized <h:math xmlns:h=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><h:mrow><h:msub><h:mrow><h:mi>La</h:mi></h:mrow><h:mrow><h:mn>4</h:mn></h:mrow></h:msub><h:msub><h:mrow><h:mi>Ni</h:mi></h:mrow><h:mrow><h:mn>3</h:mn></h:mrow></h:msub><h:msub><h:mrow><h:mi mathvariant=\"normal\">O</h:mi></h:mrow><h:mrow><h:mn>10</h:mn></h:mrow></h:msub></h:mrow></h:math>. Our research provides a new platform for the investigation of the unconventional superconductivity mechanism in Ruddlesden-Popper trilayer perovskite nickelates. <jats:supplementary-material> <jats:copyright-statement>Published by the American Physical Society</jats:copyright-statement> <jats:copyright-year>2025</jats:copyright-year> </jats:permissions> </jats:supplementary-material>","PeriodicalId":20161,"journal":{"name":"Physical Review X","volume":"217 1","pages":""},"PeriodicalIF":12.5,"publicationDate":"2025-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143782799","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-04-04DOI: 10.1103/physrevx.15.021003
Zhaoyou Wang, Liang Jiang
Bosonic pure-loss channel, which represents the process of photons decaying into a vacuum environment, has zero quantum capacity when the channel’s transmissivity is less than 50%. Modeled as a beam splitter interaction between the system and its environment, the performance of bosonic pure-loss channel can be enhanced by controlling the environment state. We show that by choosing the ideal Gottesman-Kitaev-Preskill (GKP) states for the system and its environment, perfect transmission of quantum information through a beam splitter is achievable at arbitrarily low transmissivities. Our explicit constructions allow for experimental demonstration of the improved performance of a quantum channel through passive environment assistance, which is potentially useful for quantum transduction where the environment state can be naturally controlled. In practice, it is crucial to consider finite-energy constraints, and high-fidelity quantum communication through a beam splitter remains achievable with GKP states at the few-photon level. Published by the American Physical Society2025
{"title":"Passive Environment-Assisted Quantum Communication with GKP States","authors":"Zhaoyou Wang, Liang Jiang","doi":"10.1103/physrevx.15.021003","DOIUrl":"https://doi.org/10.1103/physrevx.15.021003","url":null,"abstract":"Bosonic pure-loss channel, which represents the process of photons decaying into a vacuum environment, has zero quantum capacity when the channel’s transmissivity is less than 50%. Modeled as a beam splitter interaction between the system and its environment, the performance of bosonic pure-loss channel can be enhanced by controlling the environment state. We show that by choosing the ideal Gottesman-Kitaev-Preskill (GKP) states for the system and its environment, perfect transmission of quantum information through a beam splitter is achievable at arbitrarily low transmissivities. Our explicit constructions allow for experimental demonstration of the improved performance of a quantum channel through passive environment assistance, which is potentially useful for quantum transduction where the environment state can be naturally controlled. In practice, it is crucial to consider finite-energy constraints, and high-fidelity quantum communication through a beam splitter remains achievable with GKP states at the few-photon level. <jats:supplementary-material> <jats:copyright-statement>Published by the American Physical Society</jats:copyright-statement> <jats:copyright-year>2025</jats:copyright-year> </jats:permissions> </jats:supplementary-material>","PeriodicalId":20161,"journal":{"name":"Physical Review X","volume":"24 1","pages":""},"PeriodicalIF":12.5,"publicationDate":"2025-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143775334","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}