Madhura S Vachon, Joshua Rounds, Kirk Smith, Carlota Medus, Craig W Hedberg, Carrie Klumb, Gillian A M Tarr
{"title":"Farm animal exposure setting impacts hemolytic uremic syndrome risk among Shiga toxin-producing <i>Escherichia coli</i> cases: Minnesota, 2010-2019.","authors":"Madhura S Vachon, Joshua Rounds, Kirk Smith, Carlota Medus, Craig W Hedberg, Carrie Klumb, Gillian A M Tarr","doi":"10.1017/S0950268824000773","DOIUrl":null,"url":null,"abstract":"<p><p>Shiga toxin-producing <i>Escherichia coli</i> (STEC) transmission occurs in ruminant contact settings and can lead to post-diarrheal hemolytic uremic syndrome (HUS). We investigated whether exposure setting (ruminant exposure from living or working on a farm, visiting a farm or animal contact venue, or both) influenced HUS development among individuals with laboratory-confirmed STEC infections using Minnesota surveillance data from 2010 to 2019. Logistic regression was performed to determine whether exposure setting was associated with HUS independent of age, gender, <i>stx2</i> gene detection, and county ruminants per capita. Among confirmed STEC cases, ruminant exposure only from living or working on a farm was not significantly associated with HUS compared to cases without any ruminant exposure (OR: 1.25; 95% CI: 0.51, 3.04). However, ruminant exposure only from visiting a farm or public animal contact venue was associated with HUS (OR: 2.53; 95% CI: 1.50, 4.24). Exposure from both settings was also associated with HUS (OR: 3.71; 95% CI: 1.39, 9.90). Exposure to ruminants when visiting farms or animal contact venues is an important predictor of HUS, even among people who live or work on farms with ruminants. All people, regardless of routine ruminant exposure, should take care in settings with ruminants to avoid infection with STEC.</p>","PeriodicalId":11721,"journal":{"name":"Epidemiology and Infection","volume":" ","pages":"e96"},"PeriodicalIF":2.5000,"publicationDate":"2024-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Epidemiology and Infection","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1017/S0950268824000773","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"INFECTIOUS DISEASES","Score":null,"Total":0}
引用次数: 0
Abstract
Shiga toxin-producing Escherichia coli (STEC) transmission occurs in ruminant contact settings and can lead to post-diarrheal hemolytic uremic syndrome (HUS). We investigated whether exposure setting (ruminant exposure from living or working on a farm, visiting a farm or animal contact venue, or both) influenced HUS development among individuals with laboratory-confirmed STEC infections using Minnesota surveillance data from 2010 to 2019. Logistic regression was performed to determine whether exposure setting was associated with HUS independent of age, gender, stx2 gene detection, and county ruminants per capita. Among confirmed STEC cases, ruminant exposure only from living or working on a farm was not significantly associated with HUS compared to cases without any ruminant exposure (OR: 1.25; 95% CI: 0.51, 3.04). However, ruminant exposure only from visiting a farm or public animal contact venue was associated with HUS (OR: 2.53; 95% CI: 1.50, 4.24). Exposure from both settings was also associated with HUS (OR: 3.71; 95% CI: 1.39, 9.90). Exposure to ruminants when visiting farms or animal contact venues is an important predictor of HUS, even among people who live or work on farms with ruminants. All people, regardless of routine ruminant exposure, should take care in settings with ruminants to avoid infection with STEC.
期刊介绍:
Epidemiology & Infection publishes original reports and reviews on all aspects of infection in humans and animals. Particular emphasis is given to the epidemiology, prevention and control of infectious diseases. The scope covers the zoonoses, outbreaks, food hygiene, vaccine studies, statistics and the clinical, social and public-health aspects of infectious disease, as well as some tropical infections. It has become the key international periodical in which to find the latest reports on recently discovered infections and new technology. For those concerned with policy and planning for the control of infections, the papers on mathematical modelling of epidemics caused by historical, current and emergent infections are of particular value.