{"title":"Effect of pulsed electric field processing on the quality characteristics and enzyme activity of tender coconut water.","authors":"Nalla Bhanu Prakash Reddy, Perumal Thivya, Sugumar Anandakumar, Vincent Hema, Vadakkepulppara Ramachandran Nair Sinija","doi":"10.1177/10820132241253301","DOIUrl":null,"url":null,"abstract":"<p><p>Tender coconut water (TCW) is a natural drink rich in natural electrolytes, minerals, salts and sugars; it has good health benefits. But, its shelf-life is very limited because of the active nature of enzymes present in it when exposed to air. Therefore, the processing of TCW is necessary to inactivate the enzymes. So, this study aims to observe the effect of various process parameters of pulsed electric field (PEF) on the quality parameters of TCW. For the treatment of TCW with PEF, a full-factorial design of experiments was followed with process parameters such as three levels of electric field intensity (8, 12, and 16 kV/cm), two levels of pulse width (PW) (50 and 70 μs), and six levels of the number of pulses (2000 to 12,000 pulses) were considered at a constant pulse OFF time of 75 ms. PEF treatment did not significantly change pH, total soluble solids, and viscosity. However, it significantly affected vitamin C, colour, and total and reducing sugars. PEF treatment significantly enhanced the total phenolic content and antioxidant activity by 23.17% and 42.49%, respectively. At the same time, significant inactivation of polyphenol oxidase (100%) and peroxidase (60.2%) was observed at PEF treatment conditions of 16 kV/cm, 70 μs PW, and 12,000 pulses. Moreover, no significant change in the sensory acceptability of PEF-treated TCW (16 kV/cm, 70 μs PW, 12,000 pulses) when compared to the untreated/fresh TCW, which is a promising sign.</p>","PeriodicalId":12331,"journal":{"name":"Food Science and Technology International","volume":" ","pages":"10820132241253301"},"PeriodicalIF":1.8000,"publicationDate":"2024-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food Science and Technology International","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1177/10820132241253301","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
Tender coconut water (TCW) is a natural drink rich in natural electrolytes, minerals, salts and sugars; it has good health benefits. But, its shelf-life is very limited because of the active nature of enzymes present in it when exposed to air. Therefore, the processing of TCW is necessary to inactivate the enzymes. So, this study aims to observe the effect of various process parameters of pulsed electric field (PEF) on the quality parameters of TCW. For the treatment of TCW with PEF, a full-factorial design of experiments was followed with process parameters such as three levels of electric field intensity (8, 12, and 16 kV/cm), two levels of pulse width (PW) (50 and 70 μs), and six levels of the number of pulses (2000 to 12,000 pulses) were considered at a constant pulse OFF time of 75 ms. PEF treatment did not significantly change pH, total soluble solids, and viscosity. However, it significantly affected vitamin C, colour, and total and reducing sugars. PEF treatment significantly enhanced the total phenolic content and antioxidant activity by 23.17% and 42.49%, respectively. At the same time, significant inactivation of polyphenol oxidase (100%) and peroxidase (60.2%) was observed at PEF treatment conditions of 16 kV/cm, 70 μs PW, and 12,000 pulses. Moreover, no significant change in the sensory acceptability of PEF-treated TCW (16 kV/cm, 70 μs PW, 12,000 pulses) when compared to the untreated/fresh TCW, which is a promising sign.
期刊介绍:
Food Science and Technology International (FSTI) shares knowledge from leading researchers of food science and technology. Covers food processing and engineering, food safety and preservation, food biotechnology, and physical, chemical and sensory properties of foods. This journal is a member of the Committee on Publication Ethics (COPE).