Data-based modeling of cerebral hemodynamics quantifies impairment of cerebral blood flow regulation in type-2 diabetes.

IF 4.9 2区 医学 Q1 ENDOCRINOLOGY & METABOLISM Journal of Cerebral Blood Flow and Metabolism Pub Date : 2024-11-01 Epub Date: 2024-05-15 DOI:10.1177/0271678X241254716
Vasilis Z Marmarelis, Dae C Shin, Yue Kang, Vera Novak
{"title":"Data-based modeling of cerebral hemodynamics quantifies impairment of cerebral blood flow regulation in type-2 diabetes.","authors":"Vasilis Z Marmarelis, Dae C Shin, Yue Kang, Vera Novak","doi":"10.1177/0271678X241254716","DOIUrl":null,"url":null,"abstract":"<p><p>We studied the regulation dynamics of cerebral blood velocity (CBv) at middle cerebral arteries (MCA) in response to spontaneous changes of arterial blood pressure (ABP), termed dynamic cerebral autoregulation (dCA), and end-tidal CO<sub>2</sub> as proxy for blood CO<sub>2</sub> tension, termed dynamic vasomotor reactivity (DVR), by analyzing time-series data collected at supine rest from 36 patients with Type-2 Diabetes Mellitus (T2DM) and 22 age/sex-matched non-diabetic controls without arterial hypertension. Our analysis employed a robust dynamic modeling methodology that utilizes Principal Dynamic Modes (PDM) to estimate subject-specific dynamic transformations of spontaneous changes in ABP and end-tidal CO<sub>2</sub> (viewed as two \"inputs\") into changes of CBv at MCA measured via Transcranial Doppler ultrasound (viewed as the \"output\"). The quantitative results of PDM analysis indicate significant alterations in T2DM of both DVR and dCA in terms of two specific PDM contributions that rise to significance (p < 0.05). Our results further suggest that the observed DVR and dCA alterations may be due to reduction of cholinergic activity (based on previously published results from cholinergic blockade data) that may disturb the sympatho-vagal balance in T2DM. Combination of these two model-based \"physio-markers\" differentiated T2DM patients from controls (p = 0.0007), indicating diabetes-related alteration of cerebrovascular regulation, with possible diagnostic implications.</p>","PeriodicalId":15325,"journal":{"name":"Journal of Cerebral Blood Flow and Metabolism","volume":" ","pages":"1288-1301"},"PeriodicalIF":4.9000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11542138/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cerebral Blood Flow and Metabolism","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1177/0271678X241254716","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/5/15 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
引用次数: 0

Abstract

We studied the regulation dynamics of cerebral blood velocity (CBv) at middle cerebral arteries (MCA) in response to spontaneous changes of arterial blood pressure (ABP), termed dynamic cerebral autoregulation (dCA), and end-tidal CO2 as proxy for blood CO2 tension, termed dynamic vasomotor reactivity (DVR), by analyzing time-series data collected at supine rest from 36 patients with Type-2 Diabetes Mellitus (T2DM) and 22 age/sex-matched non-diabetic controls without arterial hypertension. Our analysis employed a robust dynamic modeling methodology that utilizes Principal Dynamic Modes (PDM) to estimate subject-specific dynamic transformations of spontaneous changes in ABP and end-tidal CO2 (viewed as two "inputs") into changes of CBv at MCA measured via Transcranial Doppler ultrasound (viewed as the "output"). The quantitative results of PDM analysis indicate significant alterations in T2DM of both DVR and dCA in terms of two specific PDM contributions that rise to significance (p < 0.05). Our results further suggest that the observed DVR and dCA alterations may be due to reduction of cholinergic activity (based on previously published results from cholinergic blockade data) that may disturb the sympatho-vagal balance in T2DM. Combination of these two model-based "physio-markers" differentiated T2DM patients from controls (p = 0.0007), indicating diabetes-related alteration of cerebrovascular regulation, with possible diagnostic implications.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于数据的脑血流动力学模型量化了 2 型糖尿病患者脑血流调节功能的损伤。
我们研究了大脑中动脉(MCA)的脑血流速度(CBv)对动脉血压(ABP)自发变化(称为动态脑自动调节(dCA))和作为血液二氧化碳张力替代物的潮气末二氧化碳(end-tidal CO2)的调节动态,称为动态血管运动反应性(DVR)、通过分析从 36 名 2 型糖尿病 (T2DM) 患者和 22 名年龄/性别匹配、无动脉高血压的非糖尿病对照组患者身上收集到的仰卧休息时的时间序列数据,我们将这些数据称为动态血管运动反应性 (DVR)。我们的分析采用了一种稳健的动态建模方法,利用主动态模式(PDM)估计 ABP 和潮气末二氧化碳(视为两个 "输入")自发变化到通过经颅多普勒超声测量的 MCA CBv 变化(视为 "输出")的特定受试者动态转换。PDM 的定量分析结果表明,DVR 和 dCA 的 T2DM 在两个特定的 PDM 贡献方面都发生了显著的变化(p<0.05)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Cerebral Blood Flow and Metabolism
Journal of Cerebral Blood Flow and Metabolism 医学-内分泌学与代谢
CiteScore
12.00
自引率
4.80%
发文量
300
审稿时长
3 months
期刊介绍: JCBFM is the official journal of the International Society for Cerebral Blood Flow & Metabolism, which is committed to publishing high quality, independently peer-reviewed research and review material. JCBFM stands at the interface between basic and clinical neurovascular research, and features timely and relevant research highlighting experimental, theoretical, and clinical aspects of brain circulation, metabolism and imaging. The journal is relevant to any physician or scientist with an interest in brain function, cerebrovascular disease, cerebral vascular regulation and brain metabolism, including neurologists, neurochemists, physiologists, pharmacologists, anesthesiologists, neuroradiologists, neurosurgeons, neuropathologists and neuroscientists.
期刊最新文献
Cerebral microvascular physiology associated with white matter lesion burden differs by level of vascular risk in typically aging older adults. Associations of life-course cardiovascular risk factors with late-life cerebral haemodynamics. Molecular and cellular mechanisms of mitochondria transfer in models of central nervous system disease. Macrovascular blood flow and microvascular cerebrovascular reactivity are regionally coupled in adolescence. A dangerous liaison: Spreading depolarization and tissue acidification in cerebral ischemia.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1