Data Science Methods for Real-World Evidence Generation in Real-World Data.

IF 7 Q1 MATHEMATICAL & COMPUTATIONAL BIOLOGY Annual Review of Biomedical Data Science Pub Date : 2024-08-01 Epub Date: 2024-07-24 DOI:10.1146/annurev-biodatasci-102423-113220
Fang Liu
{"title":"Data Science Methods for Real-World Evidence Generation in Real-World Data.","authors":"Fang Liu","doi":"10.1146/annurev-biodatasci-102423-113220","DOIUrl":null,"url":null,"abstract":"<p><p>In the healthcare landscape, data science (DS) methods have emerged as indispensable tools to harness real-world data (RWD) from various data sources such as electronic health records, claim and registry data, and data gathered from digital health technologies. Real-world evidence (RWE) generated from RWD empowers researchers, clinicians, and policymakers with a more comprehensive understanding of real-world patient outcomes. Nevertheless, persistent challenges in RWD (e.g., messiness, voluminousness, heterogeneity, multimodality) and a growing awareness of the need for trustworthy and reliable RWE demand innovative, robust, and valid DS methods for analyzing RWD. In this article, I review some common current DS methods for extracting RWE and valuable insights from complex and diverse RWD. This article encompasses the entire RWE-generation pipeline, from study design with RWD to data preprocessing, exploratory analysis, methods for analyzing RWD, and trustworthiness and reliability guarantees, along with data ethics considerations and open-source tools. This review, tailored for an audience that may not be experts in DS, aspires to offer a systematic review of DS methods and assists readers in selecting suitable DS methods and enhancing the process of RWE generation for addressing their specific challenges.</p>","PeriodicalId":29775,"journal":{"name":"Annual Review of Biomedical Data Science","volume":" ","pages":"201-224"},"PeriodicalIF":7.0000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual Review of Biomedical Data Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1146/annurev-biodatasci-102423-113220","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/7/24 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

In the healthcare landscape, data science (DS) methods have emerged as indispensable tools to harness real-world data (RWD) from various data sources such as electronic health records, claim and registry data, and data gathered from digital health technologies. Real-world evidence (RWE) generated from RWD empowers researchers, clinicians, and policymakers with a more comprehensive understanding of real-world patient outcomes. Nevertheless, persistent challenges in RWD (e.g., messiness, voluminousness, heterogeneity, multimodality) and a growing awareness of the need for trustworthy and reliable RWE demand innovative, robust, and valid DS methods for analyzing RWD. In this article, I review some common current DS methods for extracting RWE and valuable insights from complex and diverse RWD. This article encompasses the entire RWE-generation pipeline, from study design with RWD to data preprocessing, exploratory analysis, methods for analyzing RWD, and trustworthiness and reliability guarantees, along with data ethics considerations and open-source tools. This review, tailored for an audience that may not be experts in DS, aspires to offer a systematic review of DS methods and assists readers in selecting suitable DS methods and enhancing the process of RWE generation for addressing their specific challenges.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
在真实世界数据中生成证据的数据科学方法。
在医疗保健领域,数据科学(DS)方法已成为利用来自各种数据源(如电子健康记录、索赔和登记数据以及从数字医疗技术中收集的数据)的真实世界数据(RWD)的不可或缺的工具。由真实世界数据生成的真实世界证据(RWE)使研究人员、临床医生和政策制定者能够更全面地了解真实世界中患者的治疗效果。然而,RWD 中持续存在的挑战(如杂乱性、大量性、异质性、多模态性)以及人们对可信和可靠 RWE 需求的日益增长的认识,都要求采用创新、稳健和有效的 DS 方法来分析 RWD。在本文中,我回顾了当前一些常见的从复杂多样的 RWD 中提取 RWE 和有价值见解的 DS 方法。本文涵盖了整个 RWE 生成流程,从使用 RWD 的研究设计到数据预处理、探索性分析、RWD 分析方法、可信度和可靠性保证,以及数据伦理考虑和开源工具。这篇综述是为可能不是数据挖掘专家的读者量身定制的,旨在对数据挖掘方法进行系统综述,帮助读者选择合适的数据挖掘方法,并改进 RWE 生成过程,以解决他们面临的具体挑战。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
11.10
自引率
1.70%
发文量
0
期刊介绍: The Annual Review of Biomedical Data Science provides comprehensive expert reviews in biomedical data science, focusing on advanced methods to store, retrieve, analyze, and organize biomedical data and knowledge. The scope of the journal encompasses informatics, computational, artificial intelligence (AI), and statistical approaches to biomedical data, including the sub-fields of bioinformatics, computational biology, biomedical informatics, clinical and clinical research informatics, biostatistics, and imaging informatics. The mission of the journal is to identify both emerging and established areas of biomedical data science, and the leaders in these fields.
期刊最新文献
Spatial Transcriptomics Brings New Challenges and Opportunities for Trajectory Inference. The Evolutionary Interplay of Somatic and Germline Mutation Rates. Centralized and Federated Models for the Analysis of Clinical Data. Mapping the Human Cell Surface Interactome: A Key to Decode Cell-to-Cell Communication. Data Science Methods for Real-World Evidence Generation in Real-World Data.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1