{"title":"The model of the brain as a complex system: Interactions of physical, neural and mental states with neurocognitive functions","authors":"Hans-Erik Scharfen, Daniel Memmert","doi":"10.1016/j.concog.2024.103700","DOIUrl":null,"url":null,"abstract":"<div><p>The isolated approaching of physical, neural and mental states and the binary classification into stable traits and fluctuating states previously lead to a limited understanding concerning underlying processes and possibilities to explain, measure and regulate neural and mental performance along with the interaction of mental states and neurocognitive traits. In this article these states are integrated by i) differentiating the model of the brain as a complex, self-organizing system, ii) showing possibilities to measure this model, iii) offering a classification of mental states and iv) presenting a holistic operationalization of state regulations and trait trainings to enhance neural and mental high-performance on a macro- and micro scale. This model integrates current findings from the theory of constructed emotions, the theory of thousand brains and complex systems theory and yields several testable hypotheses to provide an integrated reference frame for future research and applied target points to regulate and enhance performance.</p></div>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1053810024000679/pdfft?md5=3be0d6b5b686b99dd752555816a43dc9&pid=1-s2.0-S1053810024000679-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"102","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1053810024000679","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
Abstract
The isolated approaching of physical, neural and mental states and the binary classification into stable traits and fluctuating states previously lead to a limited understanding concerning underlying processes and possibilities to explain, measure and regulate neural and mental performance along with the interaction of mental states and neurocognitive traits. In this article these states are integrated by i) differentiating the model of the brain as a complex, self-organizing system, ii) showing possibilities to measure this model, iii) offering a classification of mental states and iv) presenting a holistic operationalization of state regulations and trait trainings to enhance neural and mental high-performance on a macro- and micro scale. This model integrates current findings from the theory of constructed emotions, the theory of thousand brains and complex systems theory and yields several testable hypotheses to provide an integrated reference frame for future research and applied target points to regulate and enhance performance.