Eka D.A.Ginting, Dipo Aldila, Iffatricia H. Febiriana
{"title":"A deterministic compartment model for analyzing tuberculosis dynamics considering vaccination and reinfection","authors":"Eka D.A.Ginting, Dipo Aldila, Iffatricia H. Febiriana","doi":"10.1016/j.health.2024.100341","DOIUrl":null,"url":null,"abstract":"<div><p>Tuberculosis is a pressing global health concern, particularly pervasive in many developing nations. This study investigates the influence of treatment failure on tuberculosis control strategies, incorporating vaccination interventions using a deterministic compartmental epidemiological model. Mathematical analysis unveils disease-free and endemic equilibrium points, with the control reproduction number determined using next-generation methods. Identifying endemic equilibrium points and determining the control reproduction number provide essential metrics for assessing the effectiveness of control strategies and guiding policy decisions. The model exhibits a backward bifurcation phenomenon, leading to multiple endemic equilibria despite a reproduction number below one due to reinfection. Sensitivity analysis using Latin Hypercube Sampling/Partial Rank Correlation Coefficient elucidates parameter impacts on the control reproduction number. Vaccination efficacy is crucial for quality and validity, with superior quality and longer validity yielding more significant effects. While reinfection may not directly affect the reproduction number, its influence is pivotal in determining tuberculosis persistence or extinction. This study underscores the intricate interplay of factors in tuberculosis control strategies, providing insights vital for effective interventions and policy formulation.</p></div>","PeriodicalId":73222,"journal":{"name":"Healthcare analytics (New York, N.Y.)","volume":"5 ","pages":"Article 100341"},"PeriodicalIF":0.0000,"publicationDate":"2024-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2772442524000431/pdfft?md5=526978af322f7226856c083888cb7feb&pid=1-s2.0-S2772442524000431-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Healthcare analytics (New York, N.Y.)","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772442524000431","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Tuberculosis is a pressing global health concern, particularly pervasive in many developing nations. This study investigates the influence of treatment failure on tuberculosis control strategies, incorporating vaccination interventions using a deterministic compartmental epidemiological model. Mathematical analysis unveils disease-free and endemic equilibrium points, with the control reproduction number determined using next-generation methods. Identifying endemic equilibrium points and determining the control reproduction number provide essential metrics for assessing the effectiveness of control strategies and guiding policy decisions. The model exhibits a backward bifurcation phenomenon, leading to multiple endemic equilibria despite a reproduction number below one due to reinfection. Sensitivity analysis using Latin Hypercube Sampling/Partial Rank Correlation Coefficient elucidates parameter impacts on the control reproduction number. Vaccination efficacy is crucial for quality and validity, with superior quality and longer validity yielding more significant effects. While reinfection may not directly affect the reproduction number, its influence is pivotal in determining tuberculosis persistence or extinction. This study underscores the intricate interplay of factors in tuberculosis control strategies, providing insights vital for effective interventions and policy formulation.