23.6 % Efficient perovskite-organic tandem photovoltaics enabled by recombination layer engineering

IF 31.6 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Materials Science and Engineering: R: Reports Pub Date : 2024-05-14 DOI:10.1016/j.mser.2024.100802
Temur Maksudov , Mingjie He , Spyros Doukas , Mohamad Insan Nugraha , Begimai Adilbekova , Hendrik Faber , Linqu Luo , Renqian Zhou , Osman M. Bakr , Wojciech Ogieglo , Ingo Pinnau , George T. Harrison , Dipti R. Naphade , Zhaoheng Ling , Elefterios Lidorikis , Shadi Fatayer , Martin Heeney , Furkan H. Isikgor , Thomas D. Anthopoulos
{"title":"23.6 % Efficient perovskite-organic tandem photovoltaics enabled by recombination layer engineering","authors":"Temur Maksudov ,&nbsp;Mingjie He ,&nbsp;Spyros Doukas ,&nbsp;Mohamad Insan Nugraha ,&nbsp;Begimai Adilbekova ,&nbsp;Hendrik Faber ,&nbsp;Linqu Luo ,&nbsp;Renqian Zhou ,&nbsp;Osman M. Bakr ,&nbsp;Wojciech Ogieglo ,&nbsp;Ingo Pinnau ,&nbsp;George T. Harrison ,&nbsp;Dipti R. Naphade ,&nbsp;Zhaoheng Ling ,&nbsp;Elefterios Lidorikis ,&nbsp;Shadi Fatayer ,&nbsp;Martin Heeney ,&nbsp;Furkan H. Isikgor ,&nbsp;Thomas D. Anthopoulos","doi":"10.1016/j.mser.2024.100802","DOIUrl":null,"url":null,"abstract":"<div><p>Recombination layers are crucial in achieving high power conversion efficiency (PCE) in tandem solar cells. Here, we report the development and optimization of recombination junctions for high PCE perovskite-organic tandem solar cells (PO-TSCs). We choose a wide bandgap perovskite (1.79 eV) for the front subcell and a narrow bandgap (1.36 eV) organic bulk heterojunction (BHJ) for the rear subcell. The optimal thicknesses of the perovskite and organic layers were determined to be 260 and 100 nm, respectively, based on the analysis of Transfer-Matrix optical simulations. Our results demonstrate that the optimal recombination layer consists of an ultrathin layer of indium zinc oxide IZO (∼ 2 nm) deposited on MoO<sub>x</sub>/2PACz, which delivers a PCE of 23.6 %. This high PCE is attributed to the high transparency of the recombination layer in the NIR spectra region and the low sheet resistance of IZO. Furthermore, we provide a theoretical analysis of the potential efficiency of PO-TSCs as a function of front and rear subcells and predict a maximum theoretical PCE value of more than 36 %. Our work highlights the importance of selecting the proper recombination layer design for achieving high-performance PO-TSCs.</p></div>","PeriodicalId":386,"journal":{"name":"Materials Science and Engineering: R: Reports","volume":null,"pages":null},"PeriodicalIF":31.6000,"publicationDate":"2024-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Science and Engineering: R: Reports","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0927796X24000329","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Recombination layers are crucial in achieving high power conversion efficiency (PCE) in tandem solar cells. Here, we report the development and optimization of recombination junctions for high PCE perovskite-organic tandem solar cells (PO-TSCs). We choose a wide bandgap perovskite (1.79 eV) for the front subcell and a narrow bandgap (1.36 eV) organic bulk heterojunction (BHJ) for the rear subcell. The optimal thicknesses of the perovskite and organic layers were determined to be 260 and 100 nm, respectively, based on the analysis of Transfer-Matrix optical simulations. Our results demonstrate that the optimal recombination layer consists of an ultrathin layer of indium zinc oxide IZO (∼ 2 nm) deposited on MoOx/2PACz, which delivers a PCE of 23.6 %. This high PCE is attributed to the high transparency of the recombination layer in the NIR spectra region and the low sheet resistance of IZO. Furthermore, we provide a theoretical analysis of the potential efficiency of PO-TSCs as a function of front and rear subcells and predict a maximum theoretical PCE value of more than 36 %. Our work highlights the importance of selecting the proper recombination layer design for achieving high-performance PO-TSCs.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
23.6 % 通过重组层工程实现高效的过氧化物有机串联光伏技术
重组层是串联太阳能电池实现高功率转换效率(PCE)的关键。在此,我们报告了针对高 PCE 包晶有机串联太阳能电池 (PO-TSC) 的重组结的开发和优化。我们为前子电池选择了宽带隙(1.79 eV)的包晶石,为后子电池选择了窄带隙(1.36 eV)的有机体异质结 (BHJ)。根据转移矩阵光学模拟分析,确定了过氧化物层和有机层的最佳厚度分别为 260 纳米和 100 纳米。我们的研究结果表明,最佳重组层由沉积在 MoOx/2PACz 上的超薄氧化铟锌层 IZO(2 nm)组成,其 PCE 为 23.6%。如此高的 PCE 可归因于重组层在近红外光谱区域的高透明度和 IZO 的低薄层电阻。此外,我们还对 PO-TSC 的潜在效率与前后子电池的函数关系进行了理论分析,并预测其最大理论 PCE 值将超过 36%。我们的工作突出了选择合适的重组层设计对于实现高性能 PO-TSC 的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Materials Science and Engineering: R: Reports
Materials Science and Engineering: R: Reports 工程技术-材料科学:综合
CiteScore
60.50
自引率
0.30%
发文量
19
审稿时长
34 days
期刊介绍: Materials Science & Engineering R: Reports is a journal that covers a wide range of topics in the field of materials science and engineering. It publishes both experimental and theoretical research papers, providing background information and critical assessments on various topics. The journal aims to publish high-quality and novel research papers and reviews. The subject areas covered by the journal include Materials Science (General), Electronic Materials, Optical Materials, and Magnetic Materials. In addition to regular issues, the journal also publishes special issues on key themes in the field of materials science, including Energy Materials, Materials for Health, Materials Discovery, Innovation for High Value Manufacturing, and Sustainable Materials development.
期刊最新文献
Flexible electromagnetic interference shields: Materials, structure and multifunctionalization Advanced materials for intracellular delivery of plant cells: Strategies, mechanisms and applications Tailoring the injection action of oxygen over top-surface of bismuth sulfide to change reactive electron transfer path for flexible NO2 sensors Non-precious metal-based single-atom catalysts for oxygen reduction reaction: fundamentals and applications First-principles and experimental insight of high-entropy materials as electrocatalysts for energy-related applications: Hydrogen evolution, oxygen evolution, and oxygen reduction reactions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1