Fast and simultaneous detection of wheat kernel adulteration using hyperspectral imaging technology and deep convolutional neural network

IF 1.9 4区 农林科学 Q4 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Journal of Food Safety Pub Date : 2024-05-15 DOI:10.1111/jfs.13133
Jingwu Zhu, Zhenhong Rao, Haiyan Ji
{"title":"Fast and simultaneous detection of wheat kernel adulteration using hyperspectral imaging technology and deep convolutional neural network","authors":"Jingwu Zhu,&nbsp;Zhenhong Rao,&nbsp;Haiyan Ji","doi":"10.1111/jfs.13133","DOIUrl":null,"url":null,"abstract":"<p>In this study, hyperspectral imaging technology combined with a novel convolution neural network was utilized to detect wheat kernels adulteration. Two groups of wheat kernels were used as samples in this study. Sound wheat kernels from various varieties were in one group, while unsound wheat kernels of the same variety were in another. Hyperspectral images collected from these two groups of wheat kernels were preprocessed using a series of commonly used methods. Following the collection of hyperspectral data, a method of separating and recombining individual wheat kernels from entire hyperspectral images was applied to create training sets and validation sets. Subsequently, a series of tests were carried out to verify whether the proposed model Following that, a number of experiments were conducted to confirm if the suggested model was effective in simultaneously detecting adulterated wheat kernels, and the results gave a positive conclusion. Finally, accuracy, precision, recall and F1-scores were used as indicators to evaluate the performance of the proposed models on the test set. As the results demonstrated, satisfactory performance in detecting adulteration of the two groups of wheat kernels was obtained by the proposed model. According to the results, the proposed model combined with HSI technology has a good prospect of being used as an efficient method for detecting wheat kernels adulteration.</p>","PeriodicalId":15814,"journal":{"name":"Journal of Food Safety","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2024-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Food Safety","FirstCategoryId":"97","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/jfs.13133","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

In this study, hyperspectral imaging technology combined with a novel convolution neural network was utilized to detect wheat kernels adulteration. Two groups of wheat kernels were used as samples in this study. Sound wheat kernels from various varieties were in one group, while unsound wheat kernels of the same variety were in another. Hyperspectral images collected from these two groups of wheat kernels were preprocessed using a series of commonly used methods. Following the collection of hyperspectral data, a method of separating and recombining individual wheat kernels from entire hyperspectral images was applied to create training sets and validation sets. Subsequently, a series of tests were carried out to verify whether the proposed model Following that, a number of experiments were conducted to confirm if the suggested model was effective in simultaneously detecting adulterated wheat kernels, and the results gave a positive conclusion. Finally, accuracy, precision, recall and F1-scores were used as indicators to evaluate the performance of the proposed models on the test set. As the results demonstrated, satisfactory performance in detecting adulteration of the two groups of wheat kernels was obtained by the proposed model. According to the results, the proposed model combined with HSI technology has a good prospect of being used as an efficient method for detecting wheat kernels adulteration.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用高光谱成像技术和深度卷积神经网络快速同步检测麦仁掺假情况
本研究利用高光谱成像技术结合新型卷积神经网络来检测小麦籽粒掺假情况。本研究使用了两组小麦颗粒作为样本。一组是来自不同品种的完好麦粒,另一组是同一品种的不完好麦粒。从这两组麦粒中收集的高光谱图像采用一系列常用方法进行预处理。收集高光谱数据后,采用从整个高光谱图像中分离和重组单个麦粒的方法,创建训练集和验证集。随后,进行了一系列测试,以验证所建议的模型是否有效。 接着,进行了一系列实验,以确认所建议的模型是否能有效地同时检测出掺假麦粒,结果给出了肯定的结论。最后,以准确度、精确度、召回率和 F1 分数为指标,评估了所提模型在测试集上的表现。结果表明,所提出的模型在检测两组麦仁的掺假方面取得了令人满意的性能。结果表明,所提出的模型与人机交互技术相结合,有望成为检测麦仁掺假的有效方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Food Safety
Journal of Food Safety 工程技术-生物工程与应用微生物
CiteScore
5.30
自引率
0.00%
发文量
69
审稿时长
1 months
期刊介绍: The Journal of Food Safety emphasizes mechanistic studies involving inhibition, injury, and metabolism of food poisoning microorganisms, as well as the regulation of growth and toxin production in both model systems and complex food substrates. It also focuses on pathogens which cause food-borne illness, helping readers understand the factors affecting the initial detection of parasites, their development, transmission, and methods of control and destruction.
期刊最新文献
Pulsed Light Decontamination of Red Chilies (Capsicum annuum var. longum) Enhanced Antibacterial and Anti-Biofilm Functions of Black Bean Skin Anthocyanins Against V. parahaemolyticus Low-Temperature Domestic Deep-Frying of Soybean-Cake Tempe in Vegetable Cooking Oils: How Many Times Are Stable to Use? Assessment and Validation of Predictive Growth Models for Locally Isolated Salmonella enterica and Listeria monocytogenes in Alfalfa Sprouts at Various Temperatures Application of Antioxidant- and Antimicrobial-Rich Extracts From Hass Avocado Pulp in the Development of Chitosan/Gelatin-Based Active Packaging Films for Raw Meat Preservation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1