首页 > 最新文献

Journal of Food Safety最新文献

英文 中文
Recovery and Survival of Aerosolized Escherichia coli and Enterococcus faecium on Food-Grade Rubber, HDPE Plastic, Stainless Steel, and Waxed Cardboard 气溶胶大肠杆菌和粪肠球菌在食品级橡胶、高密度聚乙烯塑料、不锈钢和打蜡纸板上的回收率和存活率
IF 1.9 4区 农林科学 Q4 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2024-12-12 DOI: 10.1111/jfs.70002
Tuan Le, Joseph D. Eifert, Cyril A. Etaka, Laura K. Strawn

Contamination of food contact surfaces by airborne transmission of pathogens from the environment has contributed to disease outbreaks. Therefore, this study evaluated the survival and recovery of aerosolized generic Escherichia coli and Enterococcus faecium from four food contact surfaces (food-grade silicone rubber, high-density polyethylene [HDPE] plastic, stainless steel, and waxed cardboard), after four contact times (10, 20, 40, and 60 min), two relative humidity (RH) levels (high: 80%–90%, low: 40%–50%), three distances from aerosolization source (0, 36.5, and 73 cm; E. coli only), and with and without airflow (E. coli only). ANOVA test with Tukey's HSD at α = 0.05 was used to determine how treatment combinations influenced recovery. At high humidity, E. coli recovery on all materials after 40 min was ~1.0 log lower than recovery after 10 min, and further reduced by 1.0 log at 60 min. At lower humidity, E. coli recovery on all materials was ~1.0 log lower at 10 and 20 min compared with high humidity. Distances exerted no significance, whereas airflow presence lowered E. coli recovery. E. coli survival on all materials declined from ~5.0 log CFU/coupon at 0 h to 3.5 log CFU/coupon at 6 h, and 2.0 log CFU/coupon at 24 h post-inoculation. E. coli recovery was significantly lower (p < 0.05) on waxed cardboard. Low RH and longer contact time reduced E. coli recovery but not E. faecium. E. faecium recovery was consistent across treatment combinations, with changes < 0.5 log CFU/coupon. The findings are relevant for the survival of bacteria on common food contact surfaces and the potential of transmission to food products.

环境中病原体的空气传播对食品接触表面的污染已导致疾病暴发。因此,本研究评估了四种食品接触表面(食品级硅橡胶、高密度聚乙烯[HDPE]塑料、不锈钢和蜡纸板)上雾化的通用大肠杆菌和屎肠球菌的存活和恢复情况,四种接触时间(10、20、40和60分钟),两种相对湿度(RH)水平(高:80%-90%,低:40%-50%),三种距离雾化源(0,36.5和73 cm;大肠杆菌),有和没有气流(大肠杆菌)。采用Tukey’s HSD (α = 0.05)的方差分析来确定治疗组合对康复的影响。在高湿条件下,所有材料在40 min后的大肠杆菌回收率比10 min后的回收率低~1.0 log,在60 min时进一步降低1.0 log。在低湿度条件下,与高湿条件相比,在10和20 min时,所有材料上的大肠杆菌回收率降低了~1.0 log。距离没有影响,而气流的存在降低了大肠杆菌的回收率。大肠杆菌在所有材料上的存活率从接种后0 h的~5.0 log CFU/次下降到接种后6 h的3.5 log CFU/次,接种后24 h的2.0 log CFU/次。蜡纸板上的大肠杆菌回收率显著降低(p < 0.05)。低相对湿度和较长的接触时间降低了大肠杆菌的回收率,但对粪肠杆菌没有影响。在不同的治疗组合中,粪肠杆菌的回收率是一致的,变化为0.5 log CFU/coupon。这些发现与细菌在常见食品接触面上的存活以及传播到食品的可能性有关。
{"title":"Recovery and Survival of Aerosolized Escherichia coli and Enterococcus faecium on Food-Grade Rubber, HDPE Plastic, Stainless Steel, and Waxed Cardboard","authors":"Tuan Le,&nbsp;Joseph D. Eifert,&nbsp;Cyril A. Etaka,&nbsp;Laura K. Strawn","doi":"10.1111/jfs.70002","DOIUrl":"https://doi.org/10.1111/jfs.70002","url":null,"abstract":"<p>Contamination of food contact surfaces by airborne transmission of pathogens from the environment has contributed to disease outbreaks. Therefore, this study evaluated the survival and recovery of aerosolized generic <i>Escherichia coli</i> and <i>Enterococcus faecium</i> from four food contact surfaces (food-grade silicone rubber, high-density polyethylene [HDPE] plastic, stainless steel, and waxed cardboard), after four contact times (10, 20, 40, and 60 min), two relative humidity (RH) levels (high: 80%–90%, low: 40%–50%), three distances from aerosolization source (0, 36.5, and 73 cm; <i>E. coli</i> only), and with and without airflow (<i>E. coli</i> only). ANOVA test with Tukey's HSD at <i>α</i> = 0.05 was used to determine how treatment combinations influenced recovery. At high humidity, <i>E. coli</i> recovery on all materials after 40 min was ~1.0 log lower than recovery after 10 min, and further reduced by 1.0 log at 60 min. At lower humidity, <i>E. coli</i> recovery on all materials was ~1.0 log lower at 10 and 20 min compared with high humidity. Distances exerted no significance, whereas airflow presence lowered <i>E. coli</i> recovery. <i>E. coli</i> survival on all materials declined from ~5.0 log CFU/coupon at 0 h to 3.5 log CFU/coupon at 6 h, and 2.0 log CFU/coupon at 24 h post-inoculation. <i>E. coli</i> recovery was significantly lower (<i>p</i> &lt; 0.05) on waxed cardboard. Low RH and longer contact time reduced <i>E. coli</i> recovery but not <i>E. faecium. E. faecium</i> recovery was consistent across treatment combinations, with changes &lt; 0.5 log CFU/coupon. The findings are relevant for the survival of bacteria on common food contact surfaces and the potential of transmission to food products.</p>","PeriodicalId":15814,"journal":{"name":"Journal of Food Safety","volume":"44 6","pages":""},"PeriodicalIF":1.9,"publicationDate":"2024-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/jfs.70002","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142861209","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
From Germination to Stagnation: Sodium Diacetate's Impact on Clostridium perfringens Spores 从发芽到停滞:二乙酸钠对产气荚膜梭菌孢子的影响
IF 1.9 4区 农林科学 Q4 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2024-11-27 DOI: 10.1111/jfs.70001
Shengnan Liu, Dong Liang, Miaoyun Li, Niancheng Hong, Yaodi Zhu, Lijun Zhao, Gaiming Zhao

Sodium diacetate is recognized for its high efficiency as a preservative, demonstrating strong antibacterial properties that help extend the shelf life of food products. However, it is still unclear how it influences spores. This research investigated the influence of sodium diacetate on the germination and outgrowth stage in the revival process of Clostridium perfringens (C. perfringens) spores. The germination and outgrowth rate of spores after sodium diacetate treatment were measured. The changes of spore inner membrane were monitored by laser confocal microscope, electron scanning microscope and macromolecular leakage. The interaction between sodium diacetate and DNA was investigated by EB fluorescence probe, and the finding was verified by the outgrowth of spores in ham sausage. An investigation into the effects of sodium diacetate treatment on the biological activity, inner membrane permeability, morphology, and DNA integrity of spores devoid of both the coat and cortex revealed that sodium diacetate significantly hindered the transition of germinated spores into vegetative cells. In the presence of sodium diacetate, C. perfringens spores underwent germination, characterized by the hydrolysis of the spore cortex and the disassembly of the spore coat. As the spores advanced into the outgrowth phase, sodium diacetate penetrated their structure, causing damage to the inner membrane and compromising DNA integrity. Moreover, sodium diacetate was demonstrated to effectively inhibit spore outgrowth in ham sausage. This study provided theoretical guidance and references for the application of sodium diacetate in food to control the germination and outgrowth of spore-forming bacteria.

双乙酸钠是公认的高效防腐剂,具有很强的抗菌特性,有助于延长食品的保质期。然而,目前还不清楚它是如何影响孢子的。本研究调查了双乙酸钠对产气荚膜梭菌(C. perfringens)孢子复苏过程中发芽和生长阶段的影响。研究测定了双乙酸钠处理后孢子的萌发率和生长速度。通过激光共聚焦显微镜、电子扫描显微镜和大分子渗漏监测孢子内膜的变化。利用 EB 荧光探针研究了双乙酸钠与 DNA 之间的相互作用,并通过火腿肠中孢子的生长验证了这一发现。通过研究双乙酸钠处理对无外皮和无皮层孢子的生物活性、内膜渗透性、形态和 DNA 完整性的影响,发现双乙酸钠明显阻碍了发芽孢子向无性细胞的转变。在双乙酸钠存在的情况下,C. perfringens 孢子发生萌发,萌发过程的特点是孢子皮层水解和孢子衣解体。当孢子进入长出阶段时,双乙酸钠会穿透孢子结构,导致内膜受损并破坏 DNA 的完整性。此外,双乙酸钠还能有效抑制火腿肠中孢子的生长。这项研究为在食品中应用双乙酸钠控制孢子形成菌的发芽和生长提供了理论指导和参考。
{"title":"From Germination to Stagnation: Sodium Diacetate's Impact on Clostridium perfringens Spores","authors":"Shengnan Liu,&nbsp;Dong Liang,&nbsp;Miaoyun Li,&nbsp;Niancheng Hong,&nbsp;Yaodi Zhu,&nbsp;Lijun Zhao,&nbsp;Gaiming Zhao","doi":"10.1111/jfs.70001","DOIUrl":"https://doi.org/10.1111/jfs.70001","url":null,"abstract":"<div>\u0000 \u0000 <p>Sodium diacetate is recognized for its high efficiency as a preservative, demonstrating strong antibacterial properties that help extend the shelf life of food products. However, it is still unclear how it influences spores. This research investigated the influence of sodium diacetate on the germination and outgrowth stage in the revival process of <i>Clostridium perfringens</i> (<i>C. perfringens</i>) spores. The germination and outgrowth rate of spores after sodium diacetate treatment were measured. The changes of spore inner membrane were monitored by laser confocal microscope, electron scanning microscope and macromolecular leakage. The interaction between sodium diacetate and DNA was investigated by EB fluorescence probe, and the finding was verified by the outgrowth of spores in ham sausage. An investigation into the effects of sodium diacetate treatment on the biological activity, inner membrane permeability, morphology, and DNA integrity of spores devoid of both the coat and cortex revealed that sodium diacetate significantly hindered the transition of germinated spores into vegetative cells. In the presence of sodium diacetate, <i>C. perfringens</i> spores underwent germination, characterized by the hydrolysis of the spore cortex and the disassembly of the spore coat. As the spores advanced into the outgrowth phase, sodium diacetate penetrated their structure, causing damage to the inner membrane and compromising DNA integrity. Moreover, sodium diacetate was demonstrated to effectively inhibit spore outgrowth in ham sausage. This study provided theoretical guidance and references for the application of sodium diacetate in food to control the germination and outgrowth of spore-forming bacteria.</p>\u0000 </div>","PeriodicalId":15814,"journal":{"name":"Journal of Food Safety","volume":"44 6","pages":""},"PeriodicalIF":1.9,"publicationDate":"2024-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142737518","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Chemical Characterization, Cell-Based Safety, and Antioxidant Assessments of Lactobacillus helveticus Postbiotics and Their Potential Antibacterial Effects and Mode of Action Against Food-Borne Multidrug-Resistant Staphylococcus aureus and Enterohaemorrhagic Escherichia coli O157:H7 螺旋乳杆菌益生菌的化学特性、细胞安全性和抗氧化剂评估及其对食源性耐多药金黄色葡萄球菌和肠出血性大肠杆菌 O157:H7 的潜在抗菌效果和作用方式
IF 1.9 4区 农林科学 Q4 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2024-11-20 DOI: 10.1111/jfs.13174
Amin Abbasi, Mohammad Hashemi, Hadi Pourjafar, Seyede Marzieh Hosseini, Hossein Samadi Kafil, Aziz Homayouni Rad, Mansoureh Taghizadeh, Hedayat Hosseini

This study aimed to determine the chemical profile, cell-based safety, antioxidant properties, antibacterial effect, and mode of action of Lactobacillus helveticus postbiotics (LHPs) against Escherichia coli O157:H7 and multidrug-resistant Staphylococcus aureus. LHPs exhibited significant radical scavenging activity (83.59% ± 4.21% for Hydroxyl RSA; 98.33% ± 2.47% for DPPH; and 21.67% ± 2.79% for linoleic acid peroxidation inhibitory), and antibacterial action toward MDR S. aureus (inhibition zone (IZ): 32.76 mm; minimum inhibitory concentration (MIC): 36.00 μg/mL; minimum bactericidal concentration (MBC): 45.00 μg/mL; minimal effective concentration (MEC): 25 mg/mL for whole milk, and 30 mg/mL for ground meat) and E. coli O157:H7 (IZ: 25.63 mm; MIC: 60.00 μg/mL; MBC: 90.00 μg/mL: MEC: 35 mg/mL for whole milk, and 45 mg/mL for ground meat) (p < 0.05). As an antimicrobial mode of action, significant alterations in the bacterial surface charge, membrane integrity, biofilm generation, auto-aggregation ability, and swimming/sliding motility, along with the subsequent intracellular content leakage from MDR S. aureus and E. coli O157:H7, were detected after treatment with LHPs (p < 0.05). LHPs exerted a promoting influence on MV-4-11 macrophage cell viability, leading to a considerable increase in the functions of SOD and GSH-Px in these cells. As well, LHPs caused a reduction in the production of NO and a drop in ROS levels (p < 0.05). Therefore, LHPs are a promising approach against MDR S. aureus and E. coli O157:H7 proliferations and have the capacity to be used in the food sector to combat safety issues caused by pathogenic microbes.

本研究旨在确定螺旋乳杆菌益生菌(LHPs)针对大肠杆菌 O157:H7 和耐多药金黄色葡萄球菌的化学特性、细胞安全性、抗氧化性、抗菌效果和作用模式。LHPs 具有明显的自由基清除活性(对羟基 RSA 的清除率为 83.59% ± 4.21%;对 DPPH 的清除率为 98.33% ± 2.47%;对亚油酸过氧化的抑制率为 21.67% ± 2.79%),并对 MDR 金黄色葡萄球菌具有抗菌作用(抑菌区 (IZ):32.76 mm;最低抑菌浓度 (MIC):36.00 μg/mL;最低杀菌浓度 (MBC):45.00 μg/mL45.00 μg/mL;最小有效浓度(MEC):全脂牛奶为 25 mg/mL,碎肉为 30 mg/mL)和大肠杆菌 O157:H7 (IZ:25.63 mm;MIC:60.00 μg/mL;MBC:90.00 μg/mL;MEC:全脂牛奶为 35 mg/mL,碎肉为 45 mg/mL)(p <;0.05)。作为一种抗菌作用模式,经 LHPs 处理后,细菌的表面电荷、膜完整性、生物膜生成、自动聚集能力、游动/滑动运动以及随后的 MDR 金黄色葡萄球菌和大肠杆菌 O157:H7 的胞内内容物渗漏均发生了显著变化(p < 0.05)。LHPs 对 MV-4-11 巨噬细胞的活力有促进作用,使这些细胞中的 SOD 和 GSH-Px 功能显著增强。此外,LHPs 还能减少 NO 的产生,降低 ROS 水平(p < 0.05)。因此,LHPs 是对抗 MDR 金黄色葡萄球菌和大肠杆菌 O157:H7 增殖的一种很有前景的方法,可用于食品行业,以解决病原微生物引起的安全问题。
{"title":"Chemical Characterization, Cell-Based Safety, and Antioxidant Assessments of Lactobacillus helveticus Postbiotics and Their Potential Antibacterial Effects and Mode of Action Against Food-Borne Multidrug-Resistant Staphylococcus aureus and Enterohaemorrhagic Escherichia coli O157:H7","authors":"Amin Abbasi,&nbsp;Mohammad Hashemi,&nbsp;Hadi Pourjafar,&nbsp;Seyede Marzieh Hosseini,&nbsp;Hossein Samadi Kafil,&nbsp;Aziz Homayouni Rad,&nbsp;Mansoureh Taghizadeh,&nbsp;Hedayat Hosseini","doi":"10.1111/jfs.13174","DOIUrl":"https://doi.org/10.1111/jfs.13174","url":null,"abstract":"<div>\u0000 \u0000 <p>This study aimed to determine the chemical profile, cell-based safety, antioxidant properties, antibacterial effect, and mode of action of <i>Lactobacillus helveticus</i> postbiotics (LHPs) against <i>Escherichia coli</i> O157:H7 and multidrug-resistant <i>Staphylococcus aureus</i>. LHPs exhibited significant radical scavenging activity (83.59% ± 4.21% for Hydroxyl RSA; 98.33% ± 2.47% for DPPH; and 21.67% ± 2.79% for linoleic acid peroxidation inhibitory), and antibacterial action toward MDR <i>S. aureus</i> (inhibition zone (IZ): 32.76 mm; minimum inhibitory concentration (MIC): 36.00 μg/mL; minimum bactericidal concentration (MBC): 45.00 μg/mL; minimal effective concentration (MEC): 25 mg/mL for whole milk, and 30 mg/mL for ground meat) and <i>E. coli</i> O157:H7 (IZ: 25.63 mm; MIC: 60.00 μg/mL; MBC: 90.00 μg/mL: MEC: 35 mg/mL for whole milk, and 45 mg/mL for ground meat) (<i>p</i> &lt; 0.05). As an antimicrobial mode of action, significant alterations in the bacterial surface charge, membrane integrity, biofilm generation, auto-aggregation ability, and swimming/sliding motility, along with the subsequent intracellular content leakage from MDR <i>S. aureus</i> and <i>E. coli</i> O157:H7, were detected after treatment with LHPs (<i>p</i> &lt; 0.05). LHPs exerted a promoting influence on MV-4-11 macrophage cell viability, leading to a considerable increase in the functions of SOD and GSH-Px in these cells. As well, LHPs caused a reduction in the production of NO and a drop in ROS levels (<i>p</i> &lt; 0.05). Therefore, LHPs are a promising approach against MDR <i>S. aureus</i> and <i>E. coli</i> O157:H7 proliferations and have the capacity to be used in the food sector to combat safety issues caused by pathogenic microbes.</p>\u0000 </div>","PeriodicalId":15814,"journal":{"name":"Journal of Food Safety","volume":"44 6","pages":""},"PeriodicalIF":1.9,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142707793","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effects of Sodium Chloride, Sodium Lactate, and Sodium Diacetate on the Growth Probabilities of Salmonella Spp. and Staphylococcus Aureus 氯化钠、乳酸钠和二乙酸钠对沙门氏菌属和金黄色葡萄球菌生长概率的影响
IF 1.9 4区 农林科学 Q4 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2024-11-19 DOI: 10.1111/jfs.13175
Cheng-An Hwang, Lihan Huang, Shiowshuh Sheen

Salmonella spp. and Staphylococcus aureus have been linked to foodborne illnesses caused by the consumption of processed meat products. This study examined the growth probabilities of these two pathogens as affected by sodium chloride (salt), sodium lactate, and sodium diacetate in a solid medium for using these three additives to improve the microbial safety of processed meat. Sterilized tryptic soy agar (TSA, 200 μL) formulated with a combination of salt (3%–8%, aw 0.98–0.93), lactate (0%–2.4%), and diacetate (0%–0.25%) and inoculated with Salmonella spp. or S. aureus was dispersed into 96-well microplates and incubated at 37°C for 7 days. After incubation, a well showing any Salmonella spp. or S. aureus colonies was denoted as a growth event, otherwise a no-growth event. The number of growth events for each formulation was recorded. The effects of the additives on the growth event were analyzed by logistic regression to identify the growth and no-growth boundaries and the formulations that may prevent the growth of Salmonella spp. or S. aureus. For Salmonella spp., the observed minimum no-growth concentrations in TSA were 3% salt with 0.8% lactate+0.2% diacetate or 1.6% lactate+0.1% diacetate, 4% salt with 2.4% lactate, 5% salt with 0.25% diacetate, 6% salt with 0.8% lactate+0.15% diacetate, 7% salt with 0.8% lactate or 0.15% diacetate, and 8% salt alone. For S. aureus, the concentrations were 3% salt with 2.4% lactate+0.2 diacetate, 5% salt with 1.6% lactate+0.2% diacetate, 7% salt with 0.8% lactate+0.25% diacetate, and 8% salt with 0.8% lactate+0.20% diacetate or 1.6% lactate+0.15% diacetate. These no-growth formulations also inhibited the growth of both pathogens in cooked meat samples. Mathematical models were developed to describe the effects of the additives on the growth probabilities of Salmonella spp. and S. aureus. Findings from this study may be used for formulating refrigerated and shelf-stable meat products to reduce Salmonella spp. and S. aureus risk.

沙门氏菌属和金黄色葡萄球菌与食用加工肉制品引起的食源性疾病有关。本研究考察了这两种病原体在固体培养基中受氯化钠(盐)、乳酸钠和双乙酸钠影响的生长概率,以便使用这三种添加剂来提高加工肉类的微生物安全性。将灭菌的胰蛋白酶大豆琼脂(TSA,200 μL)与盐(3%-8%,aw 0.98-0.93)、乳酸(0%-2.4%)和双乙酸钠(0%-0.25%)混合配制,并接种沙门氏菌属或金黄色葡萄球菌,分散到 96 孔微孔板中,在 37°C 下培养 7 天。培养结束后,孔中出现沙门氏菌或金黄色葡萄球菌菌落即为生长事件,否则为无生长事件。记录每种配方的生长事件数量。通过逻辑回归分析添加剂对生长事件的影响,以确定生长和不生长的界限以及可能阻止沙门氏菌属或金黄色葡萄球菌生长的配方。对于沙门氏菌属,在 TSA 中观察到的最低不生长浓度为:3% 的盐加 0.8% 的乳酸盐+0.2% 的双乙酸酯或 1.6% 的乳酸盐+0.1% 的双乙酸酯;4% 的盐加 2.4% 的乳酸盐;5% 的盐加 0.25% 的双乙酸酯;6% 的盐加 0.8% 的乳酸盐+0.15% 的双乙酸酯;7% 的盐加 0.8% 的乳酸盐或 0.15% 的双乙酸酯;以及 8% 的盐单独使用。对于金黄色葡萄球菌,其浓度分别为 3%的盐加 2.4%的乳酸盐+0.2%的双乙酸酯,5%的盐加 1.6%的乳酸盐+0.2%的双乙酸酯,7%的盐加 0.8%的乳酸盐+0.25%的双乙酸酯,8%的盐加 0.8%的乳酸盐+0.20%的双乙酸酯或 1.6%的乳酸盐+0.15%的双乙酸酯。这些无生长配方也能抑制两种病原体在熟肉样品中的生长。我们建立了数学模型来描述添加剂对沙门氏菌属和金黄色葡萄球菌生长概率的影响。这项研究的结果可用于配制冷藏和保质肉制品,以降低沙门氏菌属和金黄色葡萄球菌的风险。
{"title":"Effects of Sodium Chloride, Sodium Lactate, and Sodium Diacetate on the Growth Probabilities of Salmonella Spp. and Staphylococcus Aureus","authors":"Cheng-An Hwang,&nbsp;Lihan Huang,&nbsp;Shiowshuh Sheen","doi":"10.1111/jfs.13175","DOIUrl":"https://doi.org/10.1111/jfs.13175","url":null,"abstract":"<div>\u0000 \u0000 <p><i>Salmonella</i> spp. and <i>Staphylococcus aureus</i> have been linked to foodborne illnesses caused by the consumption of processed meat products. This study examined the growth probabilities of these two pathogens as affected by sodium chloride (salt), sodium lactate, and sodium diacetate in a solid medium for using these three additives to improve the microbial safety of processed meat. Sterilized tryptic soy agar (TSA, 200 μL) formulated with a combination of salt (3%–8%, <i>a</i><sub><i>w</i></sub> 0.98–0.93), lactate (0%–2.4%), and diacetate (0%–0.25%) and inoculated with <i>Salmonella</i> spp. or <i>S. aureus</i> was dispersed into 96-well microplates and incubated at 37°C for 7 days. After incubation, a well showing any <i>Salmonella</i> spp. or <i>S. aureus</i> colonies was denoted as a growth event, otherwise a no-growth event. The number of growth events for each formulation was recorded. The effects of the additives on the growth event were analyzed by logistic regression to identify the growth and no-growth boundaries and the formulations that may prevent the growth of <i>Salmonella</i> spp. or <i>S. aureus</i>. For <i>Salmonella</i> spp., the observed minimum no-growth concentrations in TSA were 3% salt with 0.8% lactate+0.2% diacetate or 1.6% lactate+0.1% diacetate, 4% salt with 2.4% lactate, 5% salt with 0.25% diacetate, 6% salt with 0.8% lactate+0.15% diacetate, 7% salt with 0.8% lactate or 0.15% diacetate, and 8% salt alone. For <i>S. aureus</i>, the concentrations were 3% salt with 2.4% lactate+0.2 diacetate, 5% salt with 1.6% lactate+0.2% diacetate, 7% salt with 0.8% lactate+0.25% diacetate, and 8% salt with 0.8% lactate+0.20% diacetate or 1.6% lactate+0.15% diacetate. These no-growth formulations also inhibited the growth of both pathogens in cooked meat samples. Mathematical models were developed to describe the effects of the additives on the growth probabilities of <i>Salmonella</i> spp. and <i>S. aureus</i>. Findings from this study may be used for formulating refrigerated and shelf-stable meat products to reduce <i>Salmonella</i> spp. and <i>S. aureus</i> risk.</p>\u0000 </div>","PeriodicalId":15814,"journal":{"name":"Journal of Food Safety","volume":"44 6","pages":""},"PeriodicalIF":1.9,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142707704","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cold Plasma and Pulsed Light Inactivates Escherichia coli O157: H7 in Romaine Lettuce and Preserves Produce Quality 冷等离子体和脉冲光能灭活罗马生菜中的大肠杆菌 O157: H7 并保护农产品质量
IF 1.9 4区 农林科学 Q4 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2024-11-13 DOI: 10.1111/jfs.70000
Sudarsan Mukhopadhyay, Brendan A. Niemira, Dike O. Ukuku, Ocen M. Olanya, Glenn Boyd, Zhonglin T. Jin, Xuetong Fan

Fresh produce safety is important for consumer health. Intervention technologies that can lessen the pathogen threat and produce contamination is needed. In this research, cold plasma (CP), pulsed light (PL) and their combinations were assessed for inactivating Escherichia coli O157:H7 on Romaine lettuce. The effects of treatment on native microflora and sensory attributes of lettuce was also determined. An inoculum of multiple E. coli O157:H7 strains was employed for this study. Lettuce leaves were spot inoculated and then treated with PL (1–60 s), CP (15–60 s) or their optimized treatment combinations. A 30 s treatment with PL (fluence dose of 31.5 J/cm2), was optimum which provided 2.7 log CFU/g reduction of the pathogen, while 45 s treatment of CP was optimum, that delivered 2.1 log CFU/g log reduction. Combinations of PL and CP treatments were investigated for enhanced inactivation. For PL-CP combination, inoculated lettuce was treated with PL for 30 s followed by 45 s of CP exposure. While for CP-PL combination, treatments sequences were 45 s of CP treatment followed by 30 s PL treatment. Both combination treatments, PL-CP and CP-PL, resulted in synergistic inactivation of E. coli cells with > 5 log reductions of the pathogen. These combination treatments significantly (p < 0.05) reduced native microbiota and slowed their growth during storage. Additionally, treatment effects on lettuce quality was not adversely impacted. PL and CP are both non-aqueous, sustainable technologies. This study demonstrated that integration of PL and CP technology can enhance microbial safety and preserve quality of Romaine lettuce.

新鲜农产品的安全对消费者的健康非常重要。我们需要能够减少病原体威胁和农产品污染的干预技术。本研究评估了冷等离子体(CP)、脉冲光(PL)及其组合在灭活罗马生菜上的大肠埃希氏菌 O157:H7方面的效果。同时还确定了处理对莴苣本地微生物菌群和感官属性的影响。本研究采用了多种大肠杆菌 O157:H7 菌株的接种体。将生菜叶片点状接种,然后用 PL(1-60 秒)、CP(15-60 秒)或其优化处理组合进行处理。30 秒的 PL 处理(荧光剂量为 31.5 J/cm2)效果最佳,可减少 2.7 log CFU/g,而 45 秒的 CP 处理效果最佳,可减少 2.1 log CFU/g。为了提高灭活效果,还研究了聚合氯化铝和氯化石蜡处理的组合。在 PL-CP 组合处理中,先用 PL 处理接种的生菜 30 秒钟,然后再用氯化石蜡处理 45 秒钟。而对于 CP-PL 组合,处理顺序是先进行 45 秒的 CP 处理,再进行 30 秒的 PL 处理。PL-CP 和 CP-PL 这两种组合处理都能协同灭活大肠杆菌细胞,使病原体减少 5 个对数值。这些组合处理大大减少了本地微生物群(p < 0.05),并减缓了它们在贮藏期间的生长速度。此外,处理效果对生菜的质量也没有产生不利影响。PL 和 CP 都是非水基、可持续的技术。这项研究表明,整合 PL 和 CP 技术可以提高微生物的安全性并保持罗马生菜的质量。
{"title":"Cold Plasma and Pulsed Light Inactivates Escherichia coli O157: H7 in Romaine Lettuce and Preserves Produce Quality","authors":"Sudarsan Mukhopadhyay,&nbsp;Brendan A. Niemira,&nbsp;Dike O. Ukuku,&nbsp;Ocen M. Olanya,&nbsp;Glenn Boyd,&nbsp;Zhonglin T. Jin,&nbsp;Xuetong Fan","doi":"10.1111/jfs.70000","DOIUrl":"https://doi.org/10.1111/jfs.70000","url":null,"abstract":"<div>\u0000 \u0000 <p>Fresh produce safety is important for consumer health. Intervention technologies that can lessen the pathogen threat and produce contamination is needed. In this research, cold plasma (CP), pulsed light (PL) and their combinations were assessed for inactivating <i>Escherichia coli</i> O157:H7 on Romaine lettuce. The effects of treatment on native microflora and sensory attributes of lettuce was also determined. An inoculum of multiple <i>E. coli</i> O157:H7 strains was employed for this study. Lettuce leaves were spot inoculated and then treated with PL (1–60 s), CP (15–60 s) or their optimized treatment combinations. A 30 s treatment with PL (fluence dose of 31.5 J/cm<sup>2</sup>), was optimum which provided 2.7 log CFU/g reduction of the pathogen, while 45 s treatment of CP was optimum, that delivered 2.1 log CFU/g log reduction. Combinations of PL and CP treatments were investigated for enhanced inactivation. For PL-CP combination, inoculated lettuce was treated with PL for 30 s followed by 45 s of CP exposure. While for CP-PL combination, treatments sequences were 45 s of CP treatment followed by 30 s PL treatment. Both combination treatments, PL-CP and CP-PL, resulted in synergistic inactivation of <i>E. coli</i> cells with &gt; 5 log reductions of the pathogen. These combination treatments significantly (<i>p</i> &lt; 0.05) reduced native microbiota and slowed their growth during storage. Additionally, treatment effects on lettuce quality was not adversely impacted. PL and CP are both non-aqueous, sustainable technologies. This study demonstrated that integration of PL and CP technology can enhance microbial safety and preserve quality of Romaine lettuce.</p>\u0000 </div>","PeriodicalId":15814,"journal":{"name":"Journal of Food Safety","volume":"44 6","pages":""},"PeriodicalIF":1.9,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142642273","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Ginger Essential Oil Exerts Antibacterial Activity Against Shewanella putrefaciens by Disrupting Cell Structure and Resisting Biofilm 生姜精油通过破坏细胞结构和抵御生物膜对谢瓦纳菌发挥抗菌活性
IF 1.9 4区 农林科学 Q4 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2024-11-11 DOI: 10.1111/jfs.13176
Weiqing Lan, Shuting Liu, Xuening Chen, Hongqiang Zhao, Xiaohong Sun

This study aimed to elucidate the antibacterial mechanism and antibiofilm activity of ginger essential oil (GEO) against Shewanella putrefaciens. On the basis of minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC), alkaline phosphatase (AKPase), succinate dehydrogenase (SDH), and glucose-6-phosphate dehydrogenase (G6PDH) activities were analyzed to evaluate the damage degree of S. putrefaciens on cell wall and membrane, and the microstructure was observed by scanning electron microscope (SEM) to evaluate the action effect against S. putrefaciens. The results showed that the MIC and MBC of GEO against S. putrefaciens were 27.8125 mg/mL and 55.625 mg/mL, respectively. The surface structures and cell membrane of S. putrefaciens were rigorously damaged by 1 MIC and 2 MIC GEO, leading to the leakage of cellular nucleic acids, protein, and β-galactosidases from the bacterial cells. GEO could not only decrease the biomass of biofilm but also remove mature biofilm. In addition, GEO could reduce the production of exopolysaccharides and extracellular proteins, and could lessen the metabolic activity of biofilm cells. These results demonstrated that GEO exhibited efficient antibacterial characteristics against S. putrefaciens, which could act as a natural antibacterial and antibiofilm agent on the preservation of aquatic products.

本研究旨在阐明生姜精油(GEO)对谢瓦纳菌(Shewanella putrefaciens)的抗菌机制和抗生物膜活性。在测定最低抑菌浓度(MIC)和最低杀菌浓度(MBC)的基础上,分析生姜精油中碱性磷酸酶(AKPase)、琥珀酸脱氢酶(SDH)和葡萄糖-6-磷酸脱氢酶(G6PDH)的活性,评价生姜精油对腐生雪旺菌细胞壁和细胞膜的破坏程度,并用扫描电子显微镜(SEM)观察生姜精油的微观结构,评价其对腐生雪旺菌的作用效果。结果表明,GEO 对腐生沙雷氏菌的 MIC 和 MBC 分别为 27.8125 mg/mL 和 55.625 mg/mL。在 1 MIC 和 2 MIC GEO 的作用下,腐生菌的表面结构和细胞膜受到严重破坏,导致细胞核酸、蛋白质和β-半乳糖苷酶从细菌细胞中渗出。GEO 不仅能减少生物膜的生物量,还能清除成熟的生物膜。此外,GEO 还能减少外多糖和细胞外蛋白质的产生,降低生物膜细胞的代谢活性。这些结果表明,GEO 对 S. putrefaciens 具有高效的抗菌特性,可作为一种天然抗菌剂和抗生物膜剂用于水产品的保鲜。
{"title":"Ginger Essential Oil Exerts Antibacterial Activity Against Shewanella putrefaciens by Disrupting Cell Structure and Resisting Biofilm","authors":"Weiqing Lan,&nbsp;Shuting Liu,&nbsp;Xuening Chen,&nbsp;Hongqiang Zhao,&nbsp;Xiaohong Sun","doi":"10.1111/jfs.13176","DOIUrl":"https://doi.org/10.1111/jfs.13176","url":null,"abstract":"<div>\u0000 \u0000 <p>This study aimed to elucidate the antibacterial mechanism and antibiofilm activity of ginger essential oil (GEO) against <i>Shewanella putrefaciens</i>. On the basis of minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC), alkaline phosphatase (AKPase), succinate dehydrogenase (SDH), and glucose-6-phosphate dehydrogenase (G6PDH) activities were analyzed to evaluate the damage degree of <i>S. putrefaciens</i> on cell wall and membrane, and the microstructure was observed by scanning electron microscope (SEM) to evaluate the action effect against <i>S. putrefaciens</i>. The results showed that the MIC and MBC of GEO against <i>S. putrefaciens</i> were 27.8125 mg/mL and 55.625 mg/mL, respectively. The surface structures and cell membrane of <i>S. putrefaciens</i> were rigorously damaged by 1 MIC and 2 MIC GEO, leading to the leakage of cellular nucleic acids, protein, and <i>β</i>-galactosidases from the bacterial cells. GEO could not only decrease the biomass of biofilm but also remove mature biofilm. In addition, GEO could reduce the production of exopolysaccharides and extracellular proteins, and could lessen the metabolic activity of biofilm cells. These results demonstrated that GEO exhibited efficient antibacterial characteristics against <i>S. putrefaciens</i>, which could act as a natural antibacterial and antibiofilm agent on the preservation of aquatic products.</p>\u0000 </div>","PeriodicalId":15814,"journal":{"name":"Journal of Food Safety","volume":"44 6","pages":""},"PeriodicalIF":1.9,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142641951","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Investigation of the Storage Temperature Effect on Phthalate Migration Potential in Vacuum-Packed Fish Fillets 研究贮藏温度对真空包装鱼片中邻苯二甲酸酯迁移潜力的影响
IF 1.9 4区 农林科学 Q4 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2024-11-07 DOI: 10.1111/jfs.13173
Gonca Alak, Rabia Nur Yavas

Information on the microplastic (MPs) migration, particularly phthalate acid esters (PAEs) in packaged seafood, is limited to a few studies. The aim of this study is to follow the possible migration potential and speed of phthalates in rainbow trout (Oncorhynchus mykiss) fillets stored in vacuum packaging depending on the storage temperature, as well as to determine the polyethylene polymer detection. For this purpose, the fillets were randomly distributed as three pieces in each bag, vacuum-packed, and stored at commonly used temperatures (+4°C and −20°C) for 3 months. On the first day of storage in fillet and packaging materials, in certain periods of storage, the phthalate content in the fillet of each temperature group was determined. It has been determined that the chemical composition of the bag used in the vacuum packaging process is affected by the temperature depending on the storage period, and different polymer types are formed in the packaged material. Ten types of PAEs including diisobutyl phthalate (DIBP), dibutylphthalate (DBP), di-n-pentyl phthalate (DPENP), di-n-hexyl phthalate (DHEXP), butylbenzylphthalate (BBP), di-(2-ethylhexyl)-phthalate (DEHP), dicyclohexyl phthalate (DCHP), di-n-octylphthalate (DNOP), di-iso-nonylphthalate (DINP), and di-isodecylphthalate (DIDP) were recorded in the packaging material and stored fillets. It was determined that the dominant PAE in the fillets were DPENP, and DEHP in the package at all temperature applications and storage periods. The findings help monitor the presence and migration of PAEs in foods and provide a motivating model for adopting the right technologies.

有关微塑料(MPs)迁移的信息,尤其是包装海产品中邻苯二甲酸酯(PAEs)的迁移,仅限于少数几项研究。本研究的目的是跟踪虹鳟鱼(Oncorhynchus mykiss)鱼片在真空包装储存过程中邻苯二甲酸酯可能的迁移潜力和迁移速度,这取决于储存温度,同时还要确定聚乙烯聚合物的检测情况。为此,将鱼片随机分配为每袋三片,真空包装,并在常用温度(+4°C 和 -20°C)下储存 3 个月。在鱼片和包装材料贮存的第一天,在特定的贮存期内,测定每个温度组的鱼片中邻苯二甲酸酯的含量。经测定,真空包装过程中使用的包装袋的化学成分受温度的影响,具体取决于贮存期,在被包装物中会形成不同类型的聚合物。十种 PAE 包括邻苯二甲酸二异丁酯 (DIBP)、邻苯二甲酸二丁酯 (DBP)、邻苯二甲酸二正戊酯 (DPENP)、邻苯二甲酸二正己酯 (DHEXP)、邻苯二甲酸丁苄酯 (BBP)、邻苯二甲酸二(2-乙基己基)酯 (DEHP)、邻苯二甲酸二(2-乙基己基)酯(DEHP)、邻苯二甲酸二环己酯(DCHP)、邻苯二甲酸二正辛酯(DNOP)、邻苯二甲酸二异壬酯(DINP)和邻苯二甲酸二异癸酯(DIDP)。结果表明,在所有温度应用和储存期间,鱼片中主要的 PAE 是 DPENP 和 DEHP。研究结果有助于监测 PAE 在食品中的存在和迁移,并为采用正确的技术提供了一个激励模型。
{"title":"Investigation of the Storage Temperature Effect on Phthalate Migration Potential in Vacuum-Packed Fish Fillets","authors":"Gonca Alak,&nbsp;Rabia Nur Yavas","doi":"10.1111/jfs.13173","DOIUrl":"https://doi.org/10.1111/jfs.13173","url":null,"abstract":"<div>\u0000 \u0000 <p>Information on the microplastic (MPs) migration, particularly phthalate acid esters (PAEs) in packaged seafood, is limited to a few studies. The aim of this study is to follow the possible migration potential and speed of phthalates in rainbow trout (<i>Oncorhynchus mykiss</i>) fillets stored in vacuum packaging depending on the storage temperature, as well as to determine the polyethylene polymer detection. For this purpose, the fillets were randomly distributed as three pieces in each bag, vacuum-packed, and stored at commonly used temperatures (+4°C and −20°C) for 3 months. On the first day of storage in fillet and packaging materials, in certain periods of storage, the phthalate content in the fillet of each temperature group was determined. It has been determined that the chemical composition of the bag used in the vacuum packaging process is affected by the temperature depending on the storage period, and different polymer types are formed in the packaged material. Ten types of PAEs including diisobutyl phthalate (DIBP), dibutylphthalate (DBP), di-n-pentyl phthalate (DPENP), di-n-hexyl phthalate (DHEXP), butylbenzylphthalate (BBP), di-(2-ethylhexyl)-phthalate (DEHP), dicyclohexyl phthalate (DCHP), di-n-octylphthalate (DNOP), di-iso-nonylphthalate (DINP), and di-isodecylphthalate (DIDP) were recorded in the packaging material and stored fillets. It was determined that the dominant PAE in the fillets were DPENP, and DEHP in the package at all temperature applications and storage periods. The findings help monitor the presence and migration of PAEs in foods and provide a motivating model for adopting the right technologies.</p>\u0000 </div>","PeriodicalId":15814,"journal":{"name":"Journal of Food Safety","volume":"44 6","pages":""},"PeriodicalIF":1.9,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142641371","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Epiphytic, Attached, and Internal Escherichia coli O157:H7 Subpopulations Associating With Romaine Lettuce Are Strain-Dependent and Affected by Relative Humidity and Pre- and Postharvest Plant State 附生、附着和内部大肠埃希菌 O157:H7 亚群与罗马生菜的关系取决于菌株,并受相对湿度和收获前后植物状态的影响
IF 1.9 4区 农林科学 Q4 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2024-10-28 DOI: 10.1111/jfs.13169
Claire L. Hudson, Shirley A. Micallef

Romaine lettuce is susceptible to Escherichia coli O157:H7 contamination. We evaluated strain and pre- and postharvest lettuce product differences in E. coli O157:H7 subpopulation distribution on romaine lettuce at two relative humidity (RH) levels. Plants of romaine lettuce cultivar 'Carlsbad' harvested and processed 'Carlsbad' leaves, and store-bought ready-to-eat romaine lettuce were inoculated with E. coli O157:H7 reference strain EDL933 and romaine lettuce outbreak strain 2705C. Using four processing methods, we determined pathogen cell fractions representing All (entire population), Epiphytic (loosely attached cells), Strongly Attached + Internal (excluding loosely attached cells), and Internal (excluding epiphytic cells) subpopulations. Preharvest, 80% RH favored subpopulations in each cell fraction, compared to 40% RH (p < 0.01 for both strains) and yielded 92%–100% internalization incidence of E. coli O157:H7, compared to 50%–57% at 40% RH. Levels of internal EDL933 cells were also 1.1 log higher than 2705C cells from plants kept at 80% RH (p < 0.001). While EDL933 had lower measures of Strongly Attached + Internal cells compared to All and Epiphytic fractions (p < 0.01), 2705C yielded no difference. Taken together, data suggest that the lettuce outbreak strain had a higher propensity for strong attachment to leaves and EDL933 internalized more successfully. Moreover, the Strongly Attached + Internal fractions of both strains were lower on preharvest 'Carlsbad' compared to 'Carlsbad' processed leaves (p < 0.01), suggesting that E. coli O157:H7 attached less strongly to preharvest plants than postharvest cut and stored leaves of the same variety. Our study uncovers important factors influencing cultivar- and strain-specific differences in association and internalization of enteric pathogens on leafy greens.

莴苣容易受到大肠杆菌 O157:H7 的污染。我们评估了两种相对湿度(RH)水平下莴苣上大肠杆菌 O157:H7 亚群分布的菌株和收获前后莴苣产品的差异。将大肠杆菌 O157:H7 参考菌株 EDL933 和莴苣疫情菌株 2705C 接种到莴苣栽培品种 "Carlsbad "收获和加工的 "Carlsbad "叶片以及商店购买的即食莴苣上。通过四种处理方法,我们确定了病原体细胞组分,分别代表全部(整个种群)、附生(松散附着细胞)、强附着+内部(不包括松散附着细胞)和内部(不包括附生细胞)亚种群。采收前,80% 相对湿度比 40% 相对湿度更有利于各细胞部分中的亚群(两种菌株的 p 均为 0.01),大肠杆菌 O157:H7 的内化率为 92%-100%,而 40% 相对湿度时为 50%-57%。在 80% 相对湿度下,EDL933 内部细胞的水平也比 2705C 细胞高 1.1 log(p <0.001)。与所有细胞和附生细胞相比,EDL933 的强附着 + 内部细胞含量较低(p < 0.01),而 2705C 则没有差异。总之,数据表明,莴苣爆发菌株对叶片的强附着倾向更高,EDL933的内吸更成功。此外,与'Carlsbad'加工叶片相比,两种菌株在收获前'Carlsbad'叶片上的强附着+内吸部分较低(p <0.01),这表明大肠杆菌 O157:H7 在收获前植株上的附着强度低于同一品种收获后切割和储存的叶片。我们的研究发现了影响栽培品种和菌株在叶菜上肠道病原体的结合和内化差异的重要因素。
{"title":"Epiphytic, Attached, and Internal Escherichia coli O157:H7 Subpopulations Associating With Romaine Lettuce Are Strain-Dependent and Affected by Relative Humidity and Pre- and Postharvest Plant State","authors":"Claire L. Hudson,&nbsp;Shirley A. Micallef","doi":"10.1111/jfs.13169","DOIUrl":"https://doi.org/10.1111/jfs.13169","url":null,"abstract":"<p>Romaine lettuce is susceptible to <i>Escherichia coli</i> O157:H7 contamination. We evaluated strain and pre- and postharvest lettuce product differences in <i>E. coli</i> O157:H7 subpopulation distribution on romaine lettuce at two relative humidity (RH) levels. Plants of romaine lettuce cultivar 'Carlsbad' harvested and processed 'Carlsbad' leaves, and store-bought ready-to-eat romaine lettuce were inoculated with <i>E. coli</i> O157:H7 reference strain EDL933 and romaine lettuce outbreak strain 2705C. Using four processing methods, we determined pathogen cell fractions representing All (entire population), Epiphytic (loosely attached cells), Strongly Attached + Internal (excluding loosely attached cells), and Internal (excluding epiphytic cells) subpopulations. Preharvest, 80% RH favored subpopulations in each cell fraction, compared to 40% RH (<i>p</i> &lt; 0.01 for both strains) and yielded 92%–100% internalization incidence of <i>E. coli</i> O157:H7, compared to 50%–57% at 40% RH. Levels of internal EDL933 cells were also 1.1 log higher than 2705C cells from plants kept at 80% RH (<i>p &lt;</i> 0.001). While EDL933 had lower measures of Strongly Attached + Internal cells compared to All and Epiphytic fractions (<i>p</i> &lt; 0.01), 2705C yielded no difference. Taken together, data suggest that the lettuce outbreak strain had a higher propensity for strong attachment to leaves and EDL933 internalized more successfully. Moreover, the Strongly Attached + Internal fractions of both strains were lower on preharvest 'Carlsbad' compared to 'Carlsbad' processed leaves (<i>p</i> &lt; 0.01), suggesting that <i>E</i>. <i>coli</i> O157:H7 attached less strongly to preharvest plants than postharvest cut and stored leaves of the same variety. Our study uncovers important factors influencing cultivar- and strain-specific differences in association and internalization of enteric pathogens on leafy greens.</p>","PeriodicalId":15814,"journal":{"name":"Journal of Food Safety","volume":"44 5","pages":""},"PeriodicalIF":1.9,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/jfs.13169","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142540963","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effects of Combined Cold Plasma and Organic Acid-Based Sanitizer Treatments Against Salmonella enterica on Tomato Surfaces 冷等离子体和有机酸联合消毒处理对番茄表面肠炎沙门氏菌的影响
IF 1.9 4区 农林科学 Q4 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2024-10-27 DOI: 10.1111/jfs.13172
Dike O. Ukuku, Sudarsan Mukhopadhyay, Brendan A. Niemira, Ocen M. Olanya

Incidence of foodborne illness due to bacterial contamination of fresh produce continue to exist despite continuous research on processing interventions to mitigate the problem. In this study, we combined atmospheric cold plasma treatments with an antimicrobial solution containing specific organic acids generally recognized as safe (GRAS) by the FDA and tested its antimicrobial efficacy against Salmonella enterica inoculated on tomato surfaces. Tomato surfaces were inoculated with at 5.6 log CFU/g of Salmonella by spotting 0.1 mL of 7 log CFU/ml Salmonella onto the tomato stem scars, and by dipping whole tomatoes into a solution of 7 log CFU/ml Salmonella for 3 min to achieve 4.1 log CFU/g. Antimicrobial efficacy of the organic acid-based sanitizer + cold plasma treatments for 30, 60, 120, 180, and 360 s, were investigated, and significant bacterial inactivation was achieved above 120 s treatments. At 120 s, surviving populations of aerobic mesophilic bacteria recovered on the tomatoes surfaces averaged < 2 logs/g while yeast and mold survival averaged < 1 CFU/g. Treatment combination with this organic acid-based sanitizer + cold plasma for 120 s resulted in a 4.9 log reduction of Salmonella on the stem scar area and a 3.9 log reduction on the smooth peel surface. Similarly, populations of aerobic mesophilic bacteria recovered on treated tomato surfaces averaged < 0.3 log CFU/g. The results of this study indicate that combining an organic acid-based sanitizer with cold plasma treatments for ≥ 120 s can inactivates significant populations of Salmonella to enhance the microbial safety of tomato surfaces designated for fresh-cut salad.

尽管人们一直在研究如何通过加工干预措施来缓解这一问题,但由于新鲜农产品受到细菌污染而导致的食源性疾病的发生率仍然存在。在这项研究中,我们将大气冷等离子体处理与含有美国食品及药物管理局公认安全(GRAS)的特定有机酸的抗菌溶液相结合,并测试了其对番茄表面接种的肠炎沙门氏菌的抗菌效果。在番茄表面接种 5.6 log CFU/g 的沙门氏菌,方法是将 0.1 mL 7 log CFU/ml 的沙门氏菌点涂在番茄茎疤上,以及将整个番茄浸入 7 log CFU/ml 的沙门氏菌溶液中 3 分钟,以达到 4.1 log CFU/g。研究了有机酸消毒剂+冷等离子处理 30、60、120、180 和 360 秒的抗菌效果,120 秒以上的处理可显著灭活细菌。120 秒时,番茄表面恢复的需氧中嗜酸细菌存活数量平均为 2 logs/g,而酵母和霉菌存活数量平均为 1 CFU/g。使用这种有机酸消毒剂+冷等离子体处理 120 秒后,茎疤区域的沙门氏菌减少了 4.9 个对数值,光滑果皮表面的沙门氏菌减少了 3.9 个对数值。同样,在经过处理的番茄表面上回收的需氧中嗜热细菌的数量平均为 0.3 log CFU/g。这项研究的结果表明,将有机酸消毒剂与冷等离子处理结合使用≥ 120 秒,可以灭活大量沙门氏菌,从而提高用于鲜切沙拉的番茄表面的微生物安全性。
{"title":"Effects of Combined Cold Plasma and Organic Acid-Based Sanitizer Treatments Against Salmonella enterica on Tomato Surfaces","authors":"Dike O. Ukuku,&nbsp;Sudarsan Mukhopadhyay,&nbsp;Brendan A. Niemira,&nbsp;Ocen M. Olanya","doi":"10.1111/jfs.13172","DOIUrl":"https://doi.org/10.1111/jfs.13172","url":null,"abstract":"<div>\u0000 \u0000 <p>Incidence of foodborne illness due to bacterial contamination of fresh produce continue to exist despite continuous research on processing interventions to mitigate the problem. In this study, we combined atmospheric cold plasma treatments with an antimicrobial solution containing specific organic acids generally recognized as safe (GRAS) by the FDA and tested its antimicrobial efficacy against <i>Salmonella enterica</i> inoculated on tomato surfaces. Tomato surfaces were inoculated with at 5.6 log CFU/g of <i>Salmonella</i> by spotting 0.1 mL of 7 log CFU/ml <i>Salmonella</i> onto the tomato stem scars, and by dipping whole tomatoes into a solution of 7 log CFU/ml <i>Salmonella</i> for 3 min to achieve 4.1 log CFU/g. Antimicrobial efficacy of the organic acid-based sanitizer + cold plasma treatments for 30, 60, 120, 180, and 360 s, were investigated, and significant bacterial inactivation was achieved above 120 s treatments. At 120 s, surviving populations of aerobic mesophilic bacteria recovered on the tomatoes surfaces averaged &lt; 2 logs/g while yeast and mold survival averaged &lt; 1 CFU/g. Treatment combination with this organic acid-based sanitizer + cold plasma for 120 s resulted in a 4.9 log reduction of <i>Salmonella</i> on the stem scar area and a 3.9 log reduction on the smooth peel surface. Similarly, populations of aerobic mesophilic bacteria recovered on treated tomato surfaces averaged &lt; 0.3 log CFU/g. The results of this study indicate that combining an organic acid-based sanitizer with cold plasma treatments for ≥ 120 s can inactivates significant populations of <i>Salmonella</i> to enhance the microbial safety of tomato surfaces designated for fresh-cut salad.</p>\u0000 </div>","PeriodicalId":15814,"journal":{"name":"Journal of Food Safety","volume":"44 5","pages":""},"PeriodicalIF":1.9,"publicationDate":"2024-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142525544","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Near-Infrared Spectroscopy-Based Chilled Fresh Lamb Quality Detection Using Machine Learning Algorithms 利用机器学习算法进行基于近红外光谱的冰鲜羊肉质量检测
IF 1.9 4区 农林科学 Q4 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2024-10-20 DOI: 10.1111/jfs.13167
Xinxing Li, Changhui Wei, Buwen Liang

Traditionally methods for assessing mutton quality rely on physical and chemical examination analyses that necessitate precise experimental environment conditions and specialized knowledge, often resulting in the compromise of the sample's structural integrity. To address these challenges, this study explores the application of near-infrared spectroscopy (NIR) as a non-destructive alternative for mutton quality evaluation, leveraging its operational simplicity, rapid analysis capabilities, and minimal requirement for technical expertise. Among various spectral data preprocessing techniques evaluated, multiple scattering correction (MSC) was found to significantly enhance model detection performance. Furthermore, principal component analysis (PCA) combined with the Mahalanobis Distance method was utilized for outlier identification. Finally, a mutton freshness detection model is constructed based on stacking ensemble learning, yielding an impressive accuracy rate of 0.976, outperforming other advanced approaches. In conclusion, our findings establish a robust theoretical framework for the rapid and non-destructive assessment of meat freshness, contributing to advancements in meat quality detection.

传统的羊肉质量评估方法依赖于物理和化学检查分析,这需要精确的实验环境条件和专业知识,往往会导致样品结构的完整性受到影响。为了应对这些挑战,本研究探索了近红外光谱(NIR)的应用,将其作为羊肉质量评估的一种非破坏性替代方法,充分利用其操作简单、快速分析能力和对专业知识的最低要求。在所评估的各种光谱数据预处理技术中,多重散射校正(MSC)可显著提高模型检测性能。此外,主成分分析(PCA)与马哈拉诺比距离法相结合,可用于离群点识别。最后,基于堆叠集合学习构建了羊肉新鲜度检测模型,其准确率达到了令人印象深刻的 0.976,优于其他先进方法。总之,我们的研究结果为快速、无损地评估肉类新鲜度建立了一个稳健的理论框架,为肉类质量检测领域的进步做出了贡献。
{"title":"Near-Infrared Spectroscopy-Based Chilled Fresh Lamb Quality Detection Using Machine Learning Algorithms","authors":"Xinxing Li,&nbsp;Changhui Wei,&nbsp;Buwen Liang","doi":"10.1111/jfs.13167","DOIUrl":"https://doi.org/10.1111/jfs.13167","url":null,"abstract":"<div>\u0000 \u0000 <p>Traditionally methods for assessing mutton quality rely on physical and chemical examination analyses that necessitate precise experimental environment conditions and specialized knowledge, often resulting in the compromise of the sample's structural integrity. To address these challenges, this study explores the application of near-infrared spectroscopy (NIR) as a non-destructive alternative for mutton quality evaluation, leveraging its operational simplicity, rapid analysis capabilities, and minimal requirement for technical expertise. Among various spectral data preprocessing techniques evaluated, multiple scattering correction (MSC) was found to significantly enhance model detection performance. Furthermore, principal component analysis (PCA) combined with the Mahalanobis Distance method was utilized for outlier identification. Finally, a mutton freshness detection model is constructed based on stacking ensemble learning, yielding an impressive accuracy rate of 0.976, outperforming other advanced approaches. In conclusion, our findings establish a robust theoretical framework for the rapid and non-destructive assessment of meat freshness, contributing to advancements in meat quality detection.</p>\u0000 </div>","PeriodicalId":15814,"journal":{"name":"Journal of Food Safety","volume":"44 5","pages":""},"PeriodicalIF":1.9,"publicationDate":"2024-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142524708","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Journal of Food Safety
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1