The LexA–RecA* structure reveals a cryptic lock-and-key mechanism for SOS activation

IF 12.5 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Nature Structural & Molecular Biology Pub Date : 2024-05-16 DOI:10.1038/s41594-024-01317-3
Michael B. Cory, Allen Li, Christina M. Hurley, Peter J. Carman, Ruth A. Pumroy, Zachary M. Hostetler, Ryann M. Perez, Yarra Venkatesh, Xinning Li, Kushol Gupta, E. James Petersson, Rahul M. Kohli
{"title":"The LexA–RecA* structure reveals a cryptic lock-and-key mechanism for SOS activation","authors":"Michael B. Cory, Allen Li, Christina M. Hurley, Peter J. Carman, Ruth A. Pumroy, Zachary M. Hostetler, Ryann M. Perez, Yarra Venkatesh, Xinning Li, Kushol Gupta, E. James Petersson, Rahul M. Kohli","doi":"10.1038/s41594-024-01317-3","DOIUrl":null,"url":null,"abstract":"The bacterial SOS response plays a key role in adaptation to DNA damage, including genomic stress caused by antibiotics. SOS induction begins when activated RecA*, an oligomeric nucleoprotein filament that forms on single-stranded DNA, binds to and stimulates autoproteolysis of the repressor LexA. Here, we present the structure of the complete Escherichia coli SOS signal complex, constituting full-length LexA bound to RecA*. We uncover an extensive interface unexpectedly including the LexA DNA-binding domain, providing a new molecular rationale for ordered SOS gene induction. We further find that the interface involves three RecA subunits, with a single residue in the central engaged subunit acting as a molecular key, inserting into an allosteric binding pocket to induce LexA cleavage. Given the pro-mutagenic nature of SOS activation, our structural and mechanistic insights provide a foundation for developing new therapeutics to slow the evolution of antibiotic resistance. Here, using cryo-EM, the authors reveal the mechanism by which RecA filamented on single-stranded DNA binds to and induces LexA cleavage, the key signal governing the bacterial DNA damage response pathway implicated in antibiotic resistance.","PeriodicalId":49141,"journal":{"name":"Nature Structural & Molecular Biology","volume":"31 10","pages":"1522-1531"},"PeriodicalIF":12.5000,"publicationDate":"2024-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Structural & Molecular Biology","FirstCategoryId":"99","ListUrlMain":"https://www.nature.com/articles/s41594-024-01317-3","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The bacterial SOS response plays a key role in adaptation to DNA damage, including genomic stress caused by antibiotics. SOS induction begins when activated RecA*, an oligomeric nucleoprotein filament that forms on single-stranded DNA, binds to and stimulates autoproteolysis of the repressor LexA. Here, we present the structure of the complete Escherichia coli SOS signal complex, constituting full-length LexA bound to RecA*. We uncover an extensive interface unexpectedly including the LexA DNA-binding domain, providing a new molecular rationale for ordered SOS gene induction. We further find that the interface involves three RecA subunits, with a single residue in the central engaged subunit acting as a molecular key, inserting into an allosteric binding pocket to induce LexA cleavage. Given the pro-mutagenic nature of SOS activation, our structural and mechanistic insights provide a foundation for developing new therapeutics to slow the evolution of antibiotic resistance. Here, using cryo-EM, the authors reveal the mechanism by which RecA filamented on single-stranded DNA binds to and induces LexA cleavage, the key signal governing the bacterial DNA damage response pathway implicated in antibiotic resistance.

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
LexA-RecA* 结构揭示了 SOS 激活的隐秘锁钥机制
细菌的 SOS 反应在适应 DNA 损伤(包括抗生素引起的基因组压力)方面发挥着关键作用。当活化的 RecA*(一种在单链 DNA 上形成的寡聚核蛋白丝)与抑制因子 LexA 结合并刺激其自体蛋白水解时,SOS 诱导就开始了。在这里,我们展示了完整的大肠杆菌 SOS 信号复合体结构,它由与 RecA* 结合的全长 LexA 构成。我们意外地发现了一个包括 LexA DNA 结合域在内的广泛界面,为有序的 SOS 基因诱导提供了新的分子原理。我们进一步发现,该界面涉及三个 RecA 亚基,中央参与亚基中的一个残基充当了分子钥匙,插入异生结合口袋,诱导 LexA 分裂。鉴于 SOS 激活具有促突变的性质,我们在结构和机理方面的见解为开发减缓抗生素耐药性演变的新疗法奠定了基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Nature Structural & Molecular Biology
Nature Structural & Molecular Biology BIOCHEMISTRY & MOLECULAR BIOLOGY-BIOPHYSICS
CiteScore
22.00
自引率
1.80%
发文量
160
审稿时长
3-8 weeks
期刊介绍: Nature Structural & Molecular Biology is a comprehensive platform that combines structural and molecular research. Our journal focuses on exploring the functional and mechanistic aspects of biological processes, emphasizing how molecular components collaborate to achieve a particular function. While structural data can shed light on these insights, our publication does not require them as a prerequisite.
期刊最新文献
Menopause age and cancer risk is influenced by rare genetic variants Publisher Correction: Structure and activation of the RING E3 ubiquitin ligase TRIM72 on the membrane Author Correction: Structural basis for antibody-mediated NMDA receptor clustering and endocytosis in autoimmune encephalitis Clamping Pol ε to the leading strand Cohesin closes the door on coexpression
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1