首页 > 最新文献

Nature Structural & Molecular Biology最新文献

英文 中文
Mitochondrial ligase MAPL drives pyroptotic cell death 线粒体连接酶MAPL驱动热噬细胞死亡。
IF 10.1 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2026-01-15 DOI: 10.1038/s41594-025-01735-x
Yue Feng
{"title":"Mitochondrial ligase MAPL drives pyroptotic cell death","authors":"Yue Feng","doi":"10.1038/s41594-025-01735-x","DOIUrl":"10.1038/s41594-025-01735-x","url":null,"abstract":"","PeriodicalId":49141,"journal":{"name":"Nature Structural & Molecular Biology","volume":"33 1","pages":"4-4"},"PeriodicalIF":10.1,"publicationDate":"2026-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145986520","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cell-cycle-dependent repression of histone gene transcription by histone H4 组蛋白H4对组蛋白基因转录的细胞周期依赖性抑制
IF 10.1 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2026-01-05 DOI: 10.1038/s41594-025-01731-1
Kami Ahmad, Matt Wooten, Brittany N. Takushi, Velinda Vidaurre, Xin Chen, Steven Henikoff
In all eukaryotes, DNA replication is coupled to histone synthesis to coordinate chromatin packaging of the genome. Canonical histone genes coalesce in the nucleus into the histone locus body (HLB), where gene transcription and 3′ mRNA processing occurs. Both histone gene transcription and mRNA stability are reduced when DNA replication is inhibited, implying that the HLB senses the rate of DNA synthesis. In Drosophila melanogaster, the S-phase-induced histone genes are tandemly repeated in an ~100 copy array, whereas, in humans, these histone genes are scattered. In both organisms, these genes coalesce into HLBs. Here, we use a transgenic histone gene reporter and RNA interference in Drosophila to identify canonical H4 histone as a unique repressor of histone synthesis during the G2 phase in germline cells. Using cytology and CUT&Tag chromatin profiling, we find that histone H4 uniquely occupies histone gene promoters in both Drosophila and human cells. Our results suggest that repression of histone genes by soluble histone H4 is a conserved mechanism that coordinates DNA replication with histone synthesis in proliferating cells. Ahmad et al. show that soluble histone H4 binds at histone genes and acts as a repressor of their expression. These findings suggest that histone H4 is a sensor of ongoing DNA replication. Ongoing chromatin assembly uses up soluble H4 and relieves histone gene repression; however, once DNA replication ceases, soluble H4 accumulates and represses the histone genes.
在所有真核生物中,DNA复制与组蛋白合成耦合以协调基因组的染色质包装。典型组蛋白基因在细胞核中结合成组蛋白位点体(HLB),在那里基因转录和3 ' mRNA加工发生。当DNA复制受到抑制时,组蛋白基因的转录和mRNA的稳定性都降低,这表明HLB可以感知DNA合成的速度。在果蝇中,s期诱导的组蛋白基因以约100个拷贝的阵列串联重复,而在人类中,这些组蛋白基因是分散的。在这两种生物体中,这些基因结合成HLBs。在这里,我们使用转基因组蛋白基因报告基因和果蝇的RNA干扰来鉴定典型H4组蛋白是种系细胞G2期组蛋白合成的独特抑制因子。利用细胞学和CUT&;Tag染色质分析,我们发现组蛋白H4在果蝇和人类细胞中都独特地占据组蛋白基因启动子。我们的研究结果表明,可溶性组蛋白H4对组蛋白基因的抑制是一个保守的机制,它协调了增殖细胞中DNA复制和组蛋白合成。
{"title":"Cell-cycle-dependent repression of histone gene transcription by histone H4","authors":"Kami Ahmad, Matt Wooten, Brittany N. Takushi, Velinda Vidaurre, Xin Chen, Steven Henikoff","doi":"10.1038/s41594-025-01731-1","DOIUrl":"10.1038/s41594-025-01731-1","url":null,"abstract":"In all eukaryotes, DNA replication is coupled to histone synthesis to coordinate chromatin packaging of the genome. Canonical histone genes coalesce in the nucleus into the histone locus body (HLB), where gene transcription and 3′ mRNA processing occurs. Both histone gene transcription and mRNA stability are reduced when DNA replication is inhibited, implying that the HLB senses the rate of DNA synthesis. In Drosophila melanogaster, the S-phase-induced histone genes are tandemly repeated in an ~100 copy array, whereas, in humans, these histone genes are scattered. In both organisms, these genes coalesce into HLBs. Here, we use a transgenic histone gene reporter and RNA interference in Drosophila to identify canonical H4 histone as a unique repressor of histone synthesis during the G2 phase in germline cells. Using cytology and CUT&Tag chromatin profiling, we find that histone H4 uniquely occupies histone gene promoters in both Drosophila and human cells. Our results suggest that repression of histone genes by soluble histone H4 is a conserved mechanism that coordinates DNA replication with histone synthesis in proliferating cells. Ahmad et al. show that soluble histone H4 binds at histone genes and acts as a repressor of their expression. These findings suggest that histone H4 is a sensor of ongoing DNA replication. Ongoing chromatin assembly uses up soluble H4 and relieves histone gene repression; however, once DNA replication ceases, soluble H4 accumulates and represses the histone genes.","PeriodicalId":49141,"journal":{"name":"Nature Structural & Molecular Biology","volume":"33 1","pages":"145-156"},"PeriodicalIF":10.1,"publicationDate":"2026-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.comhttps://www.nature.com/articles/s41594-025-01731-1.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145902691","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A negative feedback mechanism controls histone gene expression 一种负反馈机制控制组蛋白基因的表达
IF 10.1 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2026-01-05 DOI: 10.1038/s41594-025-01733-z
Tommy O’Haren, Leila E. Rieder
The mechanisms that confine replication-dependent histone expression to S phase of the cell cycle remain unclear. Studies in Drosophila and cultured human cells show that non-nucleosomal histone H4 acts in a negative feedback loop to curtail histone gene expression at the end of S phase.
将复制依赖性组蛋白表达限制在细胞周期S期的机制尚不清楚。对果蝇和培养的人类细胞的研究表明,非核小体组蛋白H4在S期结束时以负反馈回路抑制组蛋白基因的表达。
{"title":"A negative feedback mechanism controls histone gene expression","authors":"Tommy O’Haren, Leila E. Rieder","doi":"10.1038/s41594-025-01733-z","DOIUrl":"10.1038/s41594-025-01733-z","url":null,"abstract":"The mechanisms that confine replication-dependent histone expression to S phase of the cell cycle remain unclear. Studies in Drosophila and cultured human cells show that non-nucleosomal histone H4 acts in a negative feedback loop to curtail histone gene expression at the end of S phase.","PeriodicalId":49141,"journal":{"name":"Nature Structural & Molecular Biology","volume":"33 1","pages":"1-3"},"PeriodicalIF":10.1,"publicationDate":"2026-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145902692","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
High-resolution cryo-EM meets parasitology in structural models of the conoid from Toxoplasma 高分辨率低温电镜符合弓形虫锥体结构模型的寄生虫学。
IF 10.1 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2026-01-02 DOI: 10.1038/s41594-025-01729-9
In this study, we applied single-particle cryogenic electron microscopy (cryo-EM) to native samples isolated from the human parasite Toxoplasma gondii, determining multiple structures of key components of the conoid, a cone-shaped organelle essential for host-cell invasion. We assigned 40 distinct proteins to the cryo-EM densities and uncovered their spatial organization and interactions.
在这项研究中,我们应用单粒子低温电子显微镜(cryo-EM)对从人类寄生虫弓形虫中分离的原生样品进行了分析,确定了圆锥体(一种对宿主细胞入侵至关重要的圆锥体)关键成分的多种结构。我们将40种不同的蛋白质分配到低温电镜密度,并揭示了它们的空间组织和相互作用。
{"title":"High-resolution cryo-EM meets parasitology in structural models of the conoid from Toxoplasma","authors":"","doi":"10.1038/s41594-025-01729-9","DOIUrl":"10.1038/s41594-025-01729-9","url":null,"abstract":"In this study, we applied single-particle cryogenic electron microscopy (cryo-EM) to native samples isolated from the human parasite Toxoplasma gondii, determining multiple structures of key components of the conoid, a cone-shaped organelle essential for host-cell invasion. We assigned 40 distinct proteins to the cryo-EM densities and uncovered their spatial organization and interactions.","PeriodicalId":49141,"journal":{"name":"Nature Structural & Molecular Biology","volume":"33 1","pages":"5-6"},"PeriodicalIF":10.1,"publicationDate":"2026-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145892958","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Closing 2025, and a look ahead 2025年即将结束,展望未来
IF 10.1 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2025-12-12 DOI: 10.1038/s41594-025-01732-0
We review 2025 and discuss some of the foremost initiatives developed at the journal. We also look back at discoveries we have been proud to publish.
我们回顾了2025年,并讨论了一些在期刊上发展起来的最重要的举措。我们也会回顾我们曾经自豪地发表过的发现。
{"title":"Closing 2025, and a look ahead","authors":"","doi":"10.1038/s41594-025-01732-0","DOIUrl":"10.1038/s41594-025-01732-0","url":null,"abstract":"We review 2025 and discuss some of the foremost initiatives developed at the journal. We also look back at discoveries we have been proud to publish.","PeriodicalId":49141,"journal":{"name":"Nature Structural & Molecular Biology","volume":"32 12","pages":"2373-2373"},"PeriodicalIF":10.1,"publicationDate":"2025-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.comhttps://www.nature.com/articles/s41594-025-01732-0.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145730583","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The aging of the AlphaFold database AlphaFold数据库的老化。
IF 10.1 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2025-12-10 DOI: 10.1038/s41594-025-01725-z
Ifigenia Tsitsa, Anja Conev, Alessia David, Suhail A. Islam, Michael J. E. Sternberg
The AlphaFold database, released in 2022, modeled UniProt sequences from April 2021 and now provides 200 million predicted protein structures. Of the 20,504 full-length predicted human structures, 631 entries conflict with the June 2025 UniProt release. Similar conflicts across species highlight how bioinformatics resources can rapidly age.
AlphaFold数据库于2022年发布,从2021年4月开始模拟UniProt序列,现在提供了2亿个预测的蛋白质结构。在20,504个全长预测的人体结构中,有631个条目与UniProt于2025年6月发布的版本相冲突。跨物种的类似冲突凸显了生物信息学资源是如何迅速老化的。
{"title":"The aging of the AlphaFold database","authors":"Ifigenia Tsitsa, Anja Conev, Alessia David, Suhail A. Islam, Michael J. E. Sternberg","doi":"10.1038/s41594-025-01725-z","DOIUrl":"10.1038/s41594-025-01725-z","url":null,"abstract":"The AlphaFold database, released in 2022, modeled UniProt sequences from April 2021 and now provides 200 million predicted protein structures. Of the 20,504 full-length predicted human structures, 631 entries conflict with the June 2025 UniProt release. Similar conflicts across species highlight how bioinformatics resources can rapidly age.","PeriodicalId":49141,"journal":{"name":"Nature Structural & Molecular Biology","volume":"32 12","pages":"2374-2376"},"PeriodicalIF":10.1,"publicationDate":"2025-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145717909","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Atomic models of the Toxoplasma cell invasion machinery 弓形虫细胞侵袭机制的原子模型
IF 10.1 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2025-12-09 DOI: 10.1038/s41594-025-01728-w
Jianwei Zeng, Yong Fu, Pengge Qian, Wei Huang, Qingwei Niu, Wandy L. Beatty, Alan Brown, L. David Sibley, Rui Zhang
Apicomplexan parasites, responsible for toxoplasmosis, cryptosporidiosis and malaria, invade host cells through a unique gliding motility mechanism powered by actomyosin motors and a dynamic organelle called the conoid. Here, using cryo-electron microscopy, we determined structures of four essential complexes of the Toxoplasma gondii conoid: the preconoidal P2 ring, tubulin-based conoid fibers, and the subpellicular and intraconoidal microtubules. Our analysis identified 40 distinct conoid proteins, several of which are essential for parasite lytic growth, as revealed through genetic disruption studies. Comparative analysis of the tubulin-containing complexes sheds light on their functional specialization by microtubule-associated proteins, while the structure of the preconoidal ring pinpoints the site of actin polymerization and initial translocation, enhancing our mechanistic understanding of gliding motility and, therefore, parasite invasion. Zeng et al. applied single-particle cryo-electron microscopy to native samples isolated from the human parasite Toxoplasma gondii, determining multiple structures of key components of the conoid, a cone-shaped organelle essential for host cell invasion.
顶复合体寄生虫是弓形虫病、隐孢子虫病和疟疾的罪魁祸首,它们通过一种独特的滑动运动机制侵入宿主细胞,这种机制由肌动球蛋白马达和一种称为圆锥体的动态细胞器提供动力。在这里,我们使用冷冻电子显微镜,确定了弓形虫锥体的四个基本复合物的结构:锥体前P2环,基于微管蛋白的锥体纤维,以及膜下和锥体内微管。我们的分析确定了40种不同的圆锥形蛋白,其中一些是寄生虫裂解生长所必需的,这是通过遗传破坏研究揭示的。对含微管蛋白复合物的比较分析揭示了微管相关蛋白的功能专门化,而前锥体环的结构确定了肌动蛋白聚合和初始易位的位置,增强了我们对滑翔运动和寄生虫入侵的机制理解。
{"title":"Atomic models of the Toxoplasma cell invasion machinery","authors":"Jianwei Zeng, Yong Fu, Pengge Qian, Wei Huang, Qingwei Niu, Wandy L. Beatty, Alan Brown, L. David Sibley, Rui Zhang","doi":"10.1038/s41594-025-01728-w","DOIUrl":"10.1038/s41594-025-01728-w","url":null,"abstract":"Apicomplexan parasites, responsible for toxoplasmosis, cryptosporidiosis and malaria, invade host cells through a unique gliding motility mechanism powered by actomyosin motors and a dynamic organelle called the conoid. Here, using cryo-electron microscopy, we determined structures of four essential complexes of the Toxoplasma gondii conoid: the preconoidal P2 ring, tubulin-based conoid fibers, and the subpellicular and intraconoidal microtubules. Our analysis identified 40 distinct conoid proteins, several of which are essential for parasite lytic growth, as revealed through genetic disruption studies. Comparative analysis of the tubulin-containing complexes sheds light on their functional specialization by microtubule-associated proteins, while the structure of the preconoidal ring pinpoints the site of actin polymerization and initial translocation, enhancing our mechanistic understanding of gliding motility and, therefore, parasite invasion. Zeng et al. applied single-particle cryo-electron microscopy to native samples isolated from the human parasite Toxoplasma gondii, determining multiple structures of key components of the conoid, a cone-shaped organelle essential for host cell invasion.","PeriodicalId":49141,"journal":{"name":"Nature Structural & Molecular Biology","volume":"33 1","pages":"157-170"},"PeriodicalIF":10.1,"publicationDate":"2025-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.comhttps://www.nature.com/articles/s41594-025-01728-w.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145705135","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Author Correction: A small molecule stabilizer rescues the surface expression of nearly all missense variants in a GPCR 作者更正:一种小分子稳定剂挽救了GPCR中几乎所有错义变异的表面表达。
IF 10.1 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2025-12-07 DOI: 10.1038/s41594-025-01734-y
Taylor L. Mighell, Ben Lehner
{"title":"Author Correction: A small molecule stabilizer rescues the surface expression of nearly all missense variants in a GPCR","authors":"Taylor L. Mighell, Ben Lehner","doi":"10.1038/s41594-025-01734-y","DOIUrl":"10.1038/s41594-025-01734-y","url":null,"abstract":"","PeriodicalId":49141,"journal":{"name":"Nature Structural & Molecular Biology","volume":"32 12","pages":"2633-2633"},"PeriodicalIF":10.1,"publicationDate":"2025-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.comhttps://www.nature.com/articles/s41594-025-01734-y.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145701269","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Gene regulation through exon junction complex modularity 外显子结复杂模块性的基因调控。
IF 10.1 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2025-12-03 DOI: 10.1038/s41594-025-01724-0
Elizabeth T. Abshire, Lynne E. Maquat
The exon junction complex (EJC) begins to assemble on the spliceosome, which deposits EJCs upstream of most exon–exon junctions during pre-messenger RNA (mRNA) splicing. EJCs acquire additional alternative modules that define heterogeneous EJCs during pre-mRNA processing to mRNA in the nucleus and after mRNA export into the cytoplasm. In this Review, we discuss the mechanisms of EJC formation, the many roles of the EJC in pre-mRNA and mRNA regulation and how these roles are influenced by EJC composition. This Review summarizes the various functions of the exon junction complex in RNA splicing and beyond, to influence gene regulation.
外显子连接复合体(EJC)开始在剪接体上组装,在前信使RNA (mRNA)剪接期间,EJC沉积在大多数外显子-外显子连接的上游。EJCs获得额外的替代模块,这些模块定义了在mRNA前加工到细胞核中的mRNA以及mRNA输出到细胞质后的异质EJCs。在这篇综述中,我们讨论了EJC的形成机制,EJC在pre-mRNA和mRNA调控中的许多作用,以及EJC的组成如何影响这些作用。
{"title":"Gene regulation through exon junction complex modularity","authors":"Elizabeth T. Abshire, Lynne E. Maquat","doi":"10.1038/s41594-025-01724-0","DOIUrl":"10.1038/s41594-025-01724-0","url":null,"abstract":"The exon junction complex (EJC) begins to assemble on the spliceosome, which deposits EJCs upstream of most exon–exon junctions during pre-messenger RNA (mRNA) splicing. EJCs acquire additional alternative modules that define heterogeneous EJCs during pre-mRNA processing to mRNA in the nucleus and after mRNA export into the cytoplasm. In this Review, we discuss the mechanisms of EJC formation, the many roles of the EJC in pre-mRNA and mRNA regulation and how these roles are influenced by EJC composition. This Review summarizes the various functions of the exon junction complex in RNA splicing and beyond, to influence gene regulation.","PeriodicalId":49141,"journal":{"name":"Nature Structural & Molecular Biology","volume":"32 12","pages":"2387-2397"},"PeriodicalIF":10.1,"publicationDate":"2025-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145664342","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Editorial Expression of Concern: Munc13 C2B domain is an activity-dependent Ca2+ regulator of synaptic exocytosis 编辑关注表达:Munc13 C2B结构域是突触胞外分泌的活性依赖性Ca2+调节剂。
IF 10.1 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2025-12-03 DOI: 10.1038/s41594-025-01730-2
Ok-Ho Shin, Jun Lu, Jeong-Seop Rhee, Diana R. Tomchick, Zhiping P. Pang, Sonja M. Wojcik, Marcial Camacho-Perez, Nils Brose, Mischa Machius, Josep Rizo, Christian Rosenmund, Thomas C. Südhof
{"title":"Editorial Expression of Concern: Munc13 C2B domain is an activity-dependent Ca2+ regulator of synaptic exocytosis","authors":"Ok-Ho Shin, Jun Lu, Jeong-Seop Rhee, Diana R. Tomchick, Zhiping P. Pang, Sonja M. Wojcik, Marcial Camacho-Perez, Nils Brose, Mischa Machius, Josep Rizo, Christian Rosenmund, Thomas C. Südhof","doi":"10.1038/s41594-025-01730-2","DOIUrl":"10.1038/s41594-025-01730-2","url":null,"abstract":"","PeriodicalId":49141,"journal":{"name":"Nature Structural & Molecular Biology","volume":"32 12","pages":"2634-2634"},"PeriodicalIF":10.1,"publicationDate":"2025-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.comhttps://www.nature.com/articles/s41594-025-01730-2.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145664012","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Nature Structural & Molecular Biology
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1