High-fidelity four-photon GHZ states on chip

IF 6.6 1区 物理与天体物理 Q1 PHYSICS, APPLIED npj Quantum Information Pub Date : 2024-05-15 DOI:10.1038/s41534-024-00830-z
Mathias Pont, Giacomo Corrielli, Andreas Fyrillas, Iris Agresti, Gonzalo Carvacho, Nicolas Maring, Pierre-Emmanuel Emeriau, Francesco Ceccarelli, Ricardo Albiero, Paulo Henrique Dias Ferreira, Niccolo Somaschi, Jean Senellart, Isabelle Sagnes, Martina Morassi, Aristide Lemaître, Pascale Senellart, Fabio Sciarrino, Marco Liscidini, Nadia Belabas, Roberto Osellame
{"title":"High-fidelity four-photon GHZ states on chip","authors":"Mathias Pont, Giacomo Corrielli, Andreas Fyrillas, Iris Agresti, Gonzalo Carvacho, Nicolas Maring, Pierre-Emmanuel Emeriau, Francesco Ceccarelli, Ricardo Albiero, Paulo Henrique Dias Ferreira, Niccolo Somaschi, Jean Senellart, Isabelle Sagnes, Martina Morassi, Aristide Lemaître, Pascale Senellart, Fabio Sciarrino, Marco Liscidini, Nadia Belabas, Roberto Osellame","doi":"10.1038/s41534-024-00830-z","DOIUrl":null,"url":null,"abstract":"<p>Mutually entangled multi-photon states are at the heart of all-optical quantum technologies. While impressive progresses have been reported in the generation of such quantum light states using free space apparatus, high-fidelity high-rate on-chip entanglement generation is crucial for future scalability. In this work, we use a bright quantum-dot based single-photon source to demonstrate the high fidelity generation of 4-photon Greenberg-Horne-Zeilinger (GHZ) states with a low-loss reconfigurable glass photonic circuit. We reconstruct the density matrix of the generated states using full quantum-state tomography reaching an experimental fidelity to the target state of <span>\\({{{{\\mathcal{F}}}}}_{{{{{\\rm{GHZ}}}}}_{4}}=(86.0\\pm 0.4)\\, \\%\\)</span>, and a purity of <span>\\({{{{\\mathcal{P}}}}}_{{{{{\\rm{GHZ}}}}}_{4}}=(76.3\\pm 0.6)\\, \\%\\)</span>. The entanglement of the generated states is certified with a semi device-independent approach through the violation of a Bell-like inequality by more than 39 standard deviations. Finally, we carry out a four-partite quantum secret sharing protocol on-chip where a regulator shares with three interlocutors a sifted key with up to 1978 bits, achieving a qubit-error rate of 10.87%. These results establish that the quantum-dot technology combined with glass photonic circuitry offers a viable path for entanglement generation and distribution.</p>","PeriodicalId":19212,"journal":{"name":"npj Quantum Information","volume":"45 1","pages":""},"PeriodicalIF":6.6000,"publicationDate":"2024-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Quantum Information","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1038/s41534-024-00830-z","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

Mutually entangled multi-photon states are at the heart of all-optical quantum technologies. While impressive progresses have been reported in the generation of such quantum light states using free space apparatus, high-fidelity high-rate on-chip entanglement generation is crucial for future scalability. In this work, we use a bright quantum-dot based single-photon source to demonstrate the high fidelity generation of 4-photon Greenberg-Horne-Zeilinger (GHZ) states with a low-loss reconfigurable glass photonic circuit. We reconstruct the density matrix of the generated states using full quantum-state tomography reaching an experimental fidelity to the target state of \({{{{\mathcal{F}}}}}_{{{{{\rm{GHZ}}}}}_{4}}=(86.0\pm 0.4)\, \%\), and a purity of \({{{{\mathcal{P}}}}}_{{{{{\rm{GHZ}}}}}_{4}}=(76.3\pm 0.6)\, \%\). The entanglement of the generated states is certified with a semi device-independent approach through the violation of a Bell-like inequality by more than 39 standard deviations. Finally, we carry out a four-partite quantum secret sharing protocol on-chip where a regulator shares with three interlocutors a sifted key with up to 1978 bits, achieving a qubit-error rate of 10.87%. These results establish that the quantum-dot technology combined with glass photonic circuitry offers a viable path for entanglement generation and distribution.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
芯片上的高保真四光子 GHZ 状态
相互纠缠的多光子态是全光量子技术的核心。据报道,利用自由空间设备生成这种量子光态取得了令人瞩目的进展,但高保真、高速率的片上纠缠生成对未来的可扩展性至关重要。在这项工作中,我们使用基于明亮量子点的单光子源,演示了利用低损耗可重构玻璃光子电路高保真地生成 4 光子格林伯格-霍恩-蔡林格(GHZ)态。我们利用全量子态层析技术重建了生成态的密度矩阵,实验结果与目标态的保真度达到了({{{{\mathcal{F}}}}}_{{{{{\rm{GHZ}}}}}_{4}}=(86.0pm 0.4)\\%),纯度为({{{{/mathcal{P}}}}}_02/rm{GHZ}}}}}_{4}}=(76.3/pm 0.6)\\%)。通过对贝尔不等式超过 39 个标准偏差的违反,我们用一种与设备无关的半方法证明了所生成状态的纠缠性。最后,我们在芯片上执行了一个四部分量子秘密共享协议,其中一个调节器与三个对话者共享一个多达1978比特的筛选密钥,实现了10.87%的量子比特错误率。这些结果证明,量子点技术与玻璃光子电路相结合,为纠缠的产生和分配提供了一条可行的途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
npj Quantum Information
npj Quantum Information Computer Science-Computer Science (miscellaneous)
CiteScore
13.70
自引率
3.90%
发文量
130
审稿时长
29 weeks
期刊介绍: The scope of npj Quantum Information spans across all relevant disciplines, fields, approaches and levels and so considers outstanding work ranging from fundamental research to applications and technologies.
期刊最新文献
Can quantum computers do nothing? Characterizing coherent errors using matrix-element amplification Many-body entanglement via ‘which-path’ information Hardware-tailored diagonalization circuits Optical and spin coherence of Er spin qubits in epitaxial cerium dioxide on silicon
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1