{"title":"Codes for entanglement-assisted classical communication","authors":"Tushita Prasad, Markus Grassl","doi":"10.1038/s41534-024-00954-2","DOIUrl":null,"url":null,"abstract":"<p>Entanglement-assisted classical communication (EACC) aims to enhance communication systems using entanglement as an additional resource. However, there is a scarcity of explicit protocols designed for finite transmission scenarios, which presents a challenge for real-world implementation. In response, we introduce a new EACC scheme capable of correcting a fixed number of erasures/errors. It can be adjusted to the available amount of entanglement and sends classical information over a quantum channel. We establish a general framework to accomplish such a task by reducing it to a classical problem. Comparing with specific bounds, we identify optimal parameter ranges. The scheme requires only the implementation of super-dense coding which has been demonstrated successfully in experiments. Furthermore, our results show that an adaptable entanglement use confers a communication advantage. Overall, our work sheds light on how entanglement can elevate various finite-length communication protocols, opening new avenues for exploration in the field.</p>","PeriodicalId":19212,"journal":{"name":"npj Quantum Information","volume":"39 1","pages":""},"PeriodicalIF":6.6000,"publicationDate":"2025-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Quantum Information","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1038/s41534-024-00954-2","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
Entanglement-assisted classical communication (EACC) aims to enhance communication systems using entanglement as an additional resource. However, there is a scarcity of explicit protocols designed for finite transmission scenarios, which presents a challenge for real-world implementation. In response, we introduce a new EACC scheme capable of correcting a fixed number of erasures/errors. It can be adjusted to the available amount of entanglement and sends classical information over a quantum channel. We establish a general framework to accomplish such a task by reducing it to a classical problem. Comparing with specific bounds, we identify optimal parameter ranges. The scheme requires only the implementation of super-dense coding which has been demonstrated successfully in experiments. Furthermore, our results show that an adaptable entanglement use confers a communication advantage. Overall, our work sheds light on how entanglement can elevate various finite-length communication protocols, opening new avenues for exploration in the field.
期刊介绍:
The scope of npj Quantum Information spans across all relevant disciplines, fields, approaches and levels and so considers outstanding work ranging from fundamental research to applications and technologies.