{"title":"Multiphase photoclinometry as applied to the lunar photometry with LROC NAC data","authors":"Sergey Velichko , Viktor Korokhin , Yuri Velikodsky , Vadym Kaydash , Yuriy Shkuratov , Gorden Videen , Tomasz Kwiatkowski , Yehor Surkov","doi":"10.1016/j.pss.2024.105914","DOIUrl":null,"url":null,"abstract":"<div><p>An original method for photometric and geometric correction of LROC NAC data with high resolution (up to 0.5 m/pix) has been developed. The technique is based on photogrammetry and multiphase photoclinometry and allows us to obtain a longitudinal slope map and digital elevation model (DEM) with the resolution of LROC NAC CDR input images as well as to map parameters of model phase function. Obtained DEMs, requiring only LROC NAC images and LRO SPICE-kernels, exhibit significantly fewer defects and artifacts compared to existing DEMs, because they are derived from the same images they correct (self-orthorectification).</p><p>This method was used to study the area of the photometric anomaly, the Irregular Mare Patch (IMP) formation Ina. A zoning map of the correlation diagram of phase ratio vs. equigonal albedo shows significant differences in the optical (photometric) properties of the regolith for hummocky and blocky formations of the IMP Ina, compared to the surrounding areas, which indicates the different nature of their formation, age, and surface roughness, contradicting some models of the IMP formation. The analysis reveals the incompleteness or inconsistencies of previously proposed models of the IMP's formation mechanisms. The high-quality DEM of the Ina formation and surrounding area with a resolution of 0.5 m/pixel was constructed.</p></div>","PeriodicalId":20054,"journal":{"name":"Planetary and Space Science","volume":"246 ","pages":"Article 105914"},"PeriodicalIF":1.8000,"publicationDate":"2024-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Planetary and Space Science","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0032063324000783","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
An original method for photometric and geometric correction of LROC NAC data with high resolution (up to 0.5 m/pix) has been developed. The technique is based on photogrammetry and multiphase photoclinometry and allows us to obtain a longitudinal slope map and digital elevation model (DEM) with the resolution of LROC NAC CDR input images as well as to map parameters of model phase function. Obtained DEMs, requiring only LROC NAC images and LRO SPICE-kernels, exhibit significantly fewer defects and artifacts compared to existing DEMs, because they are derived from the same images they correct (self-orthorectification).
This method was used to study the area of the photometric anomaly, the Irregular Mare Patch (IMP) formation Ina. A zoning map of the correlation diagram of phase ratio vs. equigonal albedo shows significant differences in the optical (photometric) properties of the regolith for hummocky and blocky formations of the IMP Ina, compared to the surrounding areas, which indicates the different nature of their formation, age, and surface roughness, contradicting some models of the IMP formation. The analysis reveals the incompleteness or inconsistencies of previously proposed models of the IMP's formation mechanisms. The high-quality DEM of the Ina formation and surrounding area with a resolution of 0.5 m/pixel was constructed.
期刊介绍:
Planetary and Space Science publishes original articles as well as short communications (letters). Ground-based and space-borne instrumentation and laboratory simulation of solar system processes are included. The following fields of planetary and solar system research are covered:
• Celestial mechanics, including dynamical evolution of the solar system, gravitational captures and resonances, relativistic effects, tracking and dynamics
• Cosmochemistry and origin, including all aspects of the formation and initial physical and chemical evolution of the solar system
• Terrestrial planets and satellites, including the physics of the interiors, geology and morphology of the surfaces, tectonics, mineralogy and dating
• Outer planets and satellites, including formation and evolution, remote sensing at all wavelengths and in situ measurements
• Planetary atmospheres, including formation and evolution, circulation and meteorology, boundary layers, remote sensing and laboratory simulation
• Planetary magnetospheres and ionospheres, including origin of magnetic fields, magnetospheric plasma and radiation belts, and their interaction with the sun, the solar wind and satellites
• Small bodies, dust and rings, including asteroids, comets and zodiacal light and their interaction with the solar radiation and the solar wind
• Exobiology, including origin of life, detection of planetary ecosystems and pre-biological phenomena in the solar system and laboratory simulations
• Extrasolar systems, including the detection and/or the detectability of exoplanets and planetary systems, their formation and evolution, the physical and chemical properties of the exoplanets
• History of planetary and space research