{"title":"The cGAS−STING-mediated ROS and ferroptosis are involved in manganese neurotoxicity","authors":"Zhimin Zhang, Jirui Yang, Qiongli Zhou, Shiyin Zhong, Jingjing Liu, Xin Zhang, Xuhong Chang, Hui Wang","doi":"10.1016/j.jes.2024.05.003","DOIUrl":null,"url":null,"abstract":"<div><p>Manganese (Mn) has been characterized as an environmental pollutant. Excessive releases of Mn due to human activities have increased Mn levels in the environment over the years, posing a threat to human health and the environment. Long-term exposure to high concentrations of Mn can induce neurotoxicity. Therefore, toxicological studies on Mn are of paramount importance. Mn induces oxidative stress through affecting the level of reactive oxygen species (ROS), and the overabundance of ROS further triggers ferroptosis. Additionally, Mn<sup>2+</sup> was found to be a novel activator of the cyclic guanosine-adenosine synthase (cGAS)−stimulator of interferon genes (STING) pathway in the innate immune system. Thus, we speculate that Mn exposure may promote ROS production by activating the cGAS−STING pathway, which further induces oxidative stress and ferroptosis, and ultimately triggers Mn neurotoxicity. This review discusses the mechanism between Mn-induced oxidative stress and ferroptosis via activation of the cGAS−STING pathway, which may offer a prospective direction for future in-depth studies on the mechanism of Mn neurotoxicity.</p></div>","PeriodicalId":15788,"journal":{"name":"Journal of Environmental Sciences-china","volume":"152 ","pages":"Pages 71-86"},"PeriodicalIF":5.9000,"publicationDate":"2024-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Environmental Sciences-china","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S100107422400233X","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Manganese (Mn) has been characterized as an environmental pollutant. Excessive releases of Mn due to human activities have increased Mn levels in the environment over the years, posing a threat to human health and the environment. Long-term exposure to high concentrations of Mn can induce neurotoxicity. Therefore, toxicological studies on Mn are of paramount importance. Mn induces oxidative stress through affecting the level of reactive oxygen species (ROS), and the overabundance of ROS further triggers ferroptosis. Additionally, Mn2+ was found to be a novel activator of the cyclic guanosine-adenosine synthase (cGAS)−stimulator of interferon genes (STING) pathway in the innate immune system. Thus, we speculate that Mn exposure may promote ROS production by activating the cGAS−STING pathway, which further induces oxidative stress and ferroptosis, and ultimately triggers Mn neurotoxicity. This review discusses the mechanism between Mn-induced oxidative stress and ferroptosis via activation of the cGAS−STING pathway, which may offer a prospective direction for future in-depth studies on the mechanism of Mn neurotoxicity.
期刊介绍:
The Journal of Environmental Sciences is an international journal started in 1989. The journal is devoted to publish original, peer-reviewed research papers on main aspects of environmental sciences, such as environmental chemistry, environmental biology, ecology, geosciences and environmental physics. Appropriate subjects include basic and applied research on atmospheric, terrestrial and aquatic environments, pollution control and abatement technology, conservation of natural resources, environmental health and toxicology. Announcements of international environmental science meetings and other recent information are also included.