{"title":"Large control of friction and wear enabled by Ti3AlC2 MAX- multilayer graphene-polydopamine composites","authors":"Pankaj Bharti , Shubham Jaiswal , Rajeev Kumar , Pradip Kumar , Muhamed Shafeeq M , Anup Kumar Khare , Chetna Dhand , Neeraj Dwivedi","doi":"10.1016/j.flatc.2024.100671","DOIUrl":null,"url":null,"abstract":"<div><p>Friction and wear pose significant challenges in moving mechanical systems. Despite efforts to address these challenges with MAX phase materials, many of these materials lack effective lubrication and wear protection under ambient conditions. Here, we developed a composite coating that addresses these challenges through a combination of materials chemistry and engineering. This coating, composed of polydopamine-functionalized Ti<sub>3</sub>AlC<sub>2</sub> MAX (F-MAX) and multilayer graphene (MGr), known as F-MAX + MGr, demonstrated exceptional tribological performance. At its best composition, the F-MAX + MGr composite coating reduced the friction at sliding interfaces by 82 % and decreased the wear on the counterpart ball by 99.76 % compared to bare surfaces. Importantly, its tribological performance surpassed that of pristine MAX, F-MAX, and MGr coatings. This improvement is attributed to the synergistic lubricating effect of the inherently low shear strengths of Ti<sub>3</sub>AlC<sub>2</sub> MAX and MGr, the chemical properties of PDA, and the occurrence of incommensurate contacts at the interfaces. This work pioneers slippery and wear-resistant surfaces via a combination of chemical modification and materials engineering, with implications for both fundamental science and technological advancement.</p></div>","PeriodicalId":316,"journal":{"name":"FlatChem","volume":"46 ","pages":"Article 100671"},"PeriodicalIF":5.9000,"publicationDate":"2024-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"FlatChem","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2452262724000655","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Friction and wear pose significant challenges in moving mechanical systems. Despite efforts to address these challenges with MAX phase materials, many of these materials lack effective lubrication and wear protection under ambient conditions. Here, we developed a composite coating that addresses these challenges through a combination of materials chemistry and engineering. This coating, composed of polydopamine-functionalized Ti3AlC2 MAX (F-MAX) and multilayer graphene (MGr), known as F-MAX + MGr, demonstrated exceptional tribological performance. At its best composition, the F-MAX + MGr composite coating reduced the friction at sliding interfaces by 82 % and decreased the wear on the counterpart ball by 99.76 % compared to bare surfaces. Importantly, its tribological performance surpassed that of pristine MAX, F-MAX, and MGr coatings. This improvement is attributed to the synergistic lubricating effect of the inherently low shear strengths of Ti3AlC2 MAX and MGr, the chemical properties of PDA, and the occurrence of incommensurate contacts at the interfaces. This work pioneers slippery and wear-resistant surfaces via a combination of chemical modification and materials engineering, with implications for both fundamental science and technological advancement.
期刊介绍:
FlatChem - Chemistry of Flat Materials, a new voice in the community, publishes original and significant, cutting-edge research related to the chemistry of graphene and related 2D & layered materials. The overall aim of the journal is to combine the chemistry and applications of these materials, where the submission of communications, full papers, and concepts should contain chemistry in a materials context, which can be both experimental and/or theoretical. In addition to original research articles, FlatChem also offers reviews, minireviews, highlights and perspectives on the future of this research area with the scientific leaders in fields related to Flat Materials. Topics of interest include, but are not limited to, the following: -Design, synthesis, applications and investigation of graphene, graphene related materials and other 2D & layered materials (for example Silicene, Germanene, Phosphorene, MXenes, Boron nitride, Transition metal dichalcogenides) -Characterization of these materials using all forms of spectroscopy and microscopy techniques -Chemical modification or functionalization and dispersion of these materials, as well as interactions with other materials -Exploring the surface chemistry of these materials for applications in: Sensors or detectors in electrochemical/Lab on a Chip devices, Composite materials, Membranes, Environment technology, Catalysis for energy storage and conversion (for example fuel cells, supercapacitors, batteries, hydrogen storage), Biomedical technology (drug delivery, biosensing, bioimaging)