Data ecosystem business models: Value propositions and value capture with Artificial Intelligence of Things

IF 20.1 1区 管理学 Q1 INFORMATION SCIENCE & LIBRARY SCIENCE International Journal of Information Management Pub Date : 2024-05-17 DOI:10.1016/j.ijinfomgt.2024.102804
Reza Toorajipour , Pejvak Oghazi , Maximilian Palmié
{"title":"Data ecosystem business models: Value propositions and value capture with Artificial Intelligence of Things","authors":"Reza Toorajipour ,&nbsp;Pejvak Oghazi ,&nbsp;Maximilian Palmié","doi":"10.1016/j.ijinfomgt.2024.102804","DOIUrl":null,"url":null,"abstract":"<div><p>The emergence of data as a critical asset and the prevalence of technologies such as the Artificial Intelligence of Things (AIoT) on the one hand, and the importance of collaborations for value creation on the other hand have given rise to a new breed of ecosystems known as data ecosystems. While data ecosystems provide new business opportunities, proposing and capturing value in those ecosystems is challenging, and the extant literature provides little guidance in this regard. Our research encompasses two studies that address this limitation and establish a framework for business-model archetypes in the context of AIoT data ecosystems. In the first study, exploratory qualitative research on 28 leading AIoT data ecosystem actors leads to the identification of value propositions and value-capture mechanisms in these ecosystems. We identify eight possible value propositions and eight possible value-capture mechanisms. The second, qualitative study centers on 19 expert interviews. Our analysis leads to the identification of two dimensions – control and customization – that guide the conceptualization and formation of business-model archetypes. Using these dimensions, we develop a framework for business-model archetypes in AIoT data ecosystems. Our findings contribute to the discourse on data ecosystems and offer new perspectives valuable for both researchers and industry practitioners.</p></div>","PeriodicalId":48422,"journal":{"name":"International Journal of Information Management","volume":"78 ","pages":"Article 102804"},"PeriodicalIF":20.1000,"publicationDate":"2024-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0268401224000525/pdfft?md5=a0dd4ad2281388a24f340b29e2536ba3&pid=1-s2.0-S0268401224000525-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Information Management","FirstCategoryId":"91","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0268401224000525","RegionNum":1,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"INFORMATION SCIENCE & LIBRARY SCIENCE","Score":null,"Total":0}
引用次数: 0

Abstract

The emergence of data as a critical asset and the prevalence of technologies such as the Artificial Intelligence of Things (AIoT) on the one hand, and the importance of collaborations for value creation on the other hand have given rise to a new breed of ecosystems known as data ecosystems. While data ecosystems provide new business opportunities, proposing and capturing value in those ecosystems is challenging, and the extant literature provides little guidance in this regard. Our research encompasses two studies that address this limitation and establish a framework for business-model archetypes in the context of AIoT data ecosystems. In the first study, exploratory qualitative research on 28 leading AIoT data ecosystem actors leads to the identification of value propositions and value-capture mechanisms in these ecosystems. We identify eight possible value propositions and eight possible value-capture mechanisms. The second, qualitative study centers on 19 expert interviews. Our analysis leads to the identification of two dimensions – control and customization – that guide the conceptualization and formation of business-model archetypes. Using these dimensions, we develop a framework for business-model archetypes in AIoT data ecosystems. Our findings contribute to the discourse on data ecosystems and offer new perspectives valuable for both researchers and industry practitioners.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
数据生态系统商业模式:人工智能物联网的价值主张和价值获取
数据作为一种重要资产的出现和人工智能物联网(AIoT)等技术的普及,以及合作创造价值的重要性,催生了一种新型生态系统,即数据生态系统。虽然数据生态系统提供了新的商业机会,但在这些生态系统中提出和获取价值却具有挑战性,现有文献在这方面提供的指导很少。我们的研究包括两项针对这一局限性的研究,并建立了人工智能物联网数据生态系统背景下的商业模式原型框架。在第一项研究中,我们对 28 个领先的 AIoT 数据生态系统参与者进行了探索性定性研究,从而确定了这些生态系统中的价值主张和价值捕获机制。我们确定了八种可能的价值主张和八种可能的价值捕获机制。第二项定性研究以 19 次专家访谈为中心。通过分析,我们确定了两个维度--控制和定制,这两个维度可指导商业模式原型的概念化和形成。利用这些维度,我们为人工智能物联网数据生态系统中的业务模式原型制定了一个框架。我们的研究结果为有关数据生态系统的讨论做出了贡献,并为研究人员和行业从业人员提供了有价值的新视角。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
International Journal of Information Management
International Journal of Information Management INFORMATION SCIENCE & LIBRARY SCIENCE-
CiteScore
53.10
自引率
6.20%
发文量
111
审稿时长
24 days
期刊介绍: The International Journal of Information Management (IJIM) is a distinguished, international, and peer-reviewed journal dedicated to providing its readers with top-notch analysis and discussions within the evolving field of information management. Key features of the journal include: Comprehensive Coverage: IJIM keeps readers informed with major papers, reports, and reviews. Topical Relevance: The journal remains current and relevant through Viewpoint articles and regular features like Research Notes, Case Studies, and a Reviews section, ensuring readers are updated on contemporary issues. Focus on Quality: IJIM prioritizes high-quality papers that address contemporary issues in information management.
期刊最新文献
Collaborative AI in the workplace: Enhancing organizational performance through resource-based and task-technology fit perspectives Personal data strategies in digital advertising: Can first-party data outshine third-party data? Using the influence of human-as-machine representation for self-improvement products The exploration of users’ perceived value from personalization and virtual conversational agents to enable a smart home assemblage– A mixed method approach Extending the unified theory of acceptance and use of technology for sustainable technologies context
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1