Alessandro Columbu, Rafael Díaz Fuentes, Silvia Frassu
{"title":"Uniform-in-time boundedness in a class of local and nonlocal nonlinear attraction–repulsion chemotaxis models with logistics","authors":"Alessandro Columbu, Rafael Díaz Fuentes, Silvia Frassu","doi":"10.1016/j.nonrwa.2024.104135","DOIUrl":null,"url":null,"abstract":"<div><p>The following fully nonlinear attraction–repulsion and zero-flux chemotaxis model is studied: <span><span><span>(<span><math><mo>♢</mo></math></span>)</span><span><math><mfenced><mrow><mtable><mtr><mtd><msub><mrow><mi>u</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>=</mo><mo>∇</mo><mi>⋅</mi><mfenced><mrow><msup><mrow><mrow><mo>(</mo><mi>u</mi><mo>+</mo><mn>1</mn><mo>)</mo></mrow></mrow><mrow><msub><mrow><mi>m</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>−</mo><mn>1</mn></mrow></msup><mo>∇</mo><mi>u</mi><mo>−</mo><mi>χ</mi><mi>u</mi><msup><mrow><mrow><mo>(</mo><mi>u</mi><mo>+</mo><mn>1</mn><mo>)</mo></mrow></mrow><mrow><msub><mrow><mi>m</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>−</mo><mn>1</mn></mrow></msup><mo>∇</mo><mi>v</mi></mrow></mfenced><mspace></mspace></mtd></mtr><mtr><mtd><mfenced><mrow><mspace></mspace><mo>+</mo><mi>ξ</mi><mi>u</mi><msup><mrow><mrow><mo>(</mo><mi>u</mi><mo>+</mo><mn>1</mn><mo>)</mo></mrow></mrow><mrow><msub><mrow><mi>m</mi></mrow><mrow><mn>3</mn></mrow></msub><mo>−</mo><mn>1</mn></mrow></msup><mo>∇</mo><mi>w</mi></mrow></mfenced><mo>+</mo><mi>λ</mi><mi>u</mi><mo>−</mo><mi>μ</mi><msup><mrow><mi>u</mi></mrow><mrow><mi>r</mi></mrow></msup><mspace></mspace></mtd><mtd><mtext>in</mtext><mspace></mspace><mi>Ω</mi><mo>×</mo><mrow><mo>(</mo><mn>0</mn><mo>,</mo><msub><mrow><mi>T</mi></mrow><mrow><mi>m</mi><mi>a</mi><mi>x</mi></mrow></msub><mo>)</mo></mrow><mo>,</mo></mtd></mtr><mtr><mtd><mi>τ</mi><msub><mrow><mi>v</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>=</mo><mi>Δ</mi><mi>v</mi><mo>−</mo><mi>ϕ</mi><mrow><mo>(</mo><mi>t</mi><mo>,</mo><mi>v</mi><mo>)</mo></mrow><mo>+</mo><mi>f</mi><mrow><mo>(</mo><mi>u</mi><mo>)</mo></mrow><mspace></mspace></mtd><mtd><mtext>in</mtext><mspace></mspace><mi>Ω</mi><mo>×</mo><mrow><mo>(</mo><mn>0</mn><mo>,</mo><msub><mrow><mi>T</mi></mrow><mrow><mi>m</mi><mi>a</mi><mi>x</mi></mrow></msub><mo>)</mo></mrow><mo>,</mo></mtd></mtr><mtr><mtd><mi>τ</mi><msub><mrow><mi>w</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>=</mo><mi>Δ</mi><mi>w</mi><mo>−</mo><mi>ψ</mi><mrow><mo>(</mo><mi>t</mi><mo>,</mo><mi>w</mi><mo>)</mo></mrow><mo>+</mo><mi>g</mi><mrow><mo>(</mo><mi>u</mi><mo>)</mo></mrow><mspace></mspace></mtd><mtd><mtext>in</mtext><mspace></mspace><mi>Ω</mi><mo>×</mo><mrow><mo>(</mo><mn>0</mn><mo>,</mo><msub><mrow><mi>T</mi></mrow><mrow><mi>m</mi><mi>a</mi><mi>x</mi></mrow></msub><mo>)</mo></mrow><mo>.</mo></mtd></mtr></mtable></mrow></mfenced></math></span></span></span>Herein, <span><math><mi>Ω</mi></math></span> is a bounded and smooth domain of <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span>, for <span><math><mrow><mi>n</mi><mo>∈</mo><mi>N</mi></mrow></math></span>, <span><math><mrow><mi>χ</mi><mo>,</mo><mi>ξ</mi><mo>,</mo><mi>λ</mi><mo>,</mo><mi>μ</mi><mo>,</mo><mi>r</mi></mrow></math></span> proper positive numbers, <span><math><mrow><msub><mrow><mi>m</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>m</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>,</mo><msub><mrow><mi>m</mi></mrow><mrow><mn>3</mn></mrow></msub><mo>∈</mo><mi>R</mi></mrow></math></span>, and <span><math><mrow><mi>f</mi><mrow><mo>(</mo><mi>u</mi><mo>)</mo></mrow></mrow></math></span> and <span><math><mrow><mi>g</mi><mrow><mo>(</mo><mi>u</mi><mo>)</mo></mrow></mrow></math></span> regular functions that generalize the prototypes <span><math><mrow><mi>f</mi><mrow><mo>(</mo><mi>u</mi><mo>)</mo></mrow><mo>≃</mo><msup><mrow><mi>u</mi></mrow><mrow><mi>k</mi></mrow></msup></mrow></math></span> and <span><math><mrow><mi>g</mi><mrow><mo>(</mo><mi>u</mi><mo>)</mo></mrow><mo>≃</mo><msup><mrow><mi>u</mi></mrow><mrow><mi>l</mi></mrow></msup></mrow></math></span>, for some <span><math><mrow><mi>k</mi><mo>,</mo><mi>l</mi><mo>></mo><mn>0</mn></mrow></math></span> and all <span><math><mrow><mi>u</mi><mo>≥</mo><mn>0</mn></mrow></math></span>. Moreover, <span><math><mrow><mi>τ</mi><mo>∈</mo><mrow><mo>{</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>}</mo></mrow></mrow></math></span>, and <span><math><mrow><msub><mrow><mi>T</mi></mrow><mrow><mi>m</mi><mi>a</mi><mi>x</mi></mrow></msub><mo>∈</mo><mrow><mo>(</mo><mn>0</mn><mo>,</mo><mi>∞</mi><mo>]</mo></mrow></mrow></math></span> is the maximal interval of existence of solutions to the model. Once suitable initial data <span><math><mrow><msub><mrow><mi>u</mi></mrow><mrow><mn>0</mn></mrow></msub><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mo>,</mo><mi>τ</mi><msub><mrow><mi>v</mi></mrow><mrow><mn>0</mn></mrow></msub><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mo>,</mo><mi>τ</mi><msub><mrow><mi>w</mi></mrow><mrow><mn>0</mn></mrow></msub><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mrow></math></span> are fixed, we are interested in deriving sufficient conditions implying globality (i.e., <span><math><mrow><msub><mrow><mi>T</mi></mrow><mrow><mi>m</mi><mi>a</mi><mi>x</mi></mrow></msub><mo>=</mo><mi>∞</mi></mrow></math></span>) and boundedness (i.e., <span><math><mrow><mo>‖</mo><mi>u</mi><mrow><mo>(</mo><mi>⋅</mi><mo>,</mo><mi>t</mi><mo>)</mo></mrow><msub><mrow><mo>‖</mo></mrow><mrow><msup><mrow><mi>L</mi></mrow><mrow><mi>∞</mi></mrow></msup><mrow><mo>(</mo><mi>Ω</mi><mo>)</mo></mrow></mrow></msub><mo>+</mo><mo>‖</mo><mi>v</mi><mrow><mo>(</mo><mi>⋅</mi><mo>,</mo><mi>t</mi><mo>)</mo></mrow><msub><mrow><mo>‖</mo></mrow><mrow><msup><mrow><mi>L</mi></mrow><mrow><mi>∞</mi></mrow></msup><mrow><mo>(</mo><mi>Ω</mi><mo>)</mo></mrow></mrow></msub><mo>+</mo><mo>‖</mo><mi>w</mi><mrow><mo>(</mo><mi>⋅</mi><mo>,</mo><mi>t</mi><mo>)</mo></mrow><msub><mrow><mo>‖</mo></mrow><mrow><msup><mrow><mi>L</mi></mrow><mrow><mi>∞</mi></mrow></msup><mrow><mo>(</mo><mi>Ω</mi><mo>)</mo></mrow></mrow></msub><mo>≤</mo><mi>C</mi></mrow></math></span> for all <span><math><mrow><mi>t</mi><mo>∈</mo><mrow><mo>(</mo><mn>0</mn><mo>,</mo><mi>∞</mi><mo>)</mo></mrow></mrow></math></span>) of solutions to problem <span>(1)</span>. This is achieved in the following scenarios:</p><p><span><math><mo>⊳</mo></math></span> For <span><math><mrow><mi>ϕ</mi><mrow><mo>(</mo><mi>t</mi><mo>,</mo><mi>v</mi><mo>)</mo></mrow></mrow></math></span> proportional to <span><math><mi>v</mi></math></span> and <span><math><mrow><mi>ψ</mi><mrow><mo>(</mo><mi>t</mi><mo>,</mo><mi>w</mi><mo>)</mo></mrow></mrow></math></span> to <span><math><mi>w</mi></math></span>, whenever <span><math><mrow><mi>τ</mi><mo>=</mo><mn>0</mn></mrow></math></span> and provided one of the following conditions</p><p>(I) <span><math><mrow><msub><mrow><mi>m</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>+</mo><mi>k</mi><mo><</mo><msub><mrow><mi>m</mi></mrow><mrow><mn>3</mn></mrow></msub><mo>+</mo><mi>l</mi></mrow></math></span>, <span><math><mspace></mspace></math></span> (II) <span><math><mrow><msub><mrow><mi>m</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>+</mo><mi>k</mi><mo><</mo><mi>r</mi></mrow></math></span>, <span><math><mspace></mspace></math></span> (III) <span><math><mrow><msub><mrow><mi>m</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>+</mo><mi>k</mi><mo><</mo><msub><mrow><mi>m</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>+</mo><mfrac><mrow><mn>2</mn></mrow><mrow><mi>n</mi></mrow></mfrac></mrow></math></span></p><p>is accomplished or <span><math><mrow><mi>τ</mi><mo>=</mo><mn>1</mn></mrow></math></span> in conjunction with one of these restrictions</p><p>(i) <span><math><mrow><mo>max</mo><mrow><mo>[</mo><msub><mrow><mi>m</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>+</mo><mi>k</mi><mo>,</mo><msub><mrow><mi>m</mi></mrow><mrow><mn>3</mn></mrow></msub><mo>+</mo><mi>l</mi><mo>]</mo></mrow><mo><</mo><mi>r</mi></mrow></math></span>, <span><math><mspace></mspace></math></span> (ii) <span><math><mrow><mo>max</mo><mrow><mo>[</mo><msub><mrow><mi>m</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>+</mo><mi>k</mi><mo>,</mo><msub><mrow><mi>m</mi></mrow><mrow><mn>3</mn></mrow></msub><mo>+</mo><mi>l</mi><mo>]</mo></mrow><mo><</mo><msub><mrow><mi>m</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>+</mo><mfrac><mrow><mn>2</mn></mrow><mrow><mi>n</mi></mrow></mfrac></mrow></math></span>,</p><p>(iii) <span><math><mrow><msub><mrow><mi>m</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>+</mo><mi>k</mi><mo><</mo><mi>r</mi></mrow></math></span> and <span><math><mrow><msub><mrow><mi>m</mi></mrow><mrow><mn>3</mn></mrow></msub><mo>+</mo><mi>l</mi><mo><</mo><msub><mrow><mi>m</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>+</mo><mfrac><mrow><mn>2</mn></mrow><mrow><mi>n</mi></mrow></mfrac></mrow></math></span>, <span><math><mspace></mspace></math></span> (iv) <span><math><mrow><msub><mrow><mi>m</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>+</mo><mi>k</mi><mo><</mo><msub><mrow><mi>m</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>+</mo><mfrac><mrow><mn>2</mn></mrow><mrow><mi>n</mi></mrow></mfrac></mrow></math></span> and <span><math><mrow><msub><mrow><mi>m</mi></mrow><mrow><mn>3</mn></mrow></msub><mo>+</mo><mi>l</mi><mo><</mo><mi>r</mi></mrow></math></span>;</p><p><span><math><mo>⊳</mo></math></span> For <span><math><mrow><mi>ϕ</mi><mrow><mo>(</mo><mi>t</mi><mo>,</mo><mi>v</mi><mo>)</mo></mrow><mo>=</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mrow><mo>|</mo><mi>Ω</mi><mo>|</mo></mrow></mrow></mfrac><msub><mrow><mo>∫</mo></mrow><mrow><mi>Ω</mi></mrow></msub><mi>f</mi><mrow><mo>(</mo><mi>u</mi><mo>)</mo></mrow></mrow></math></span> and <span><math><mrow><mi>ψ</mi><mrow><mo>(</mo><mi>t</mi><mo>,</mo><mi>w</mi><mo>)</mo></mrow><mo>=</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mrow><mo>|</mo><mi>Ω</mi><mo>|</mo></mrow></mrow></mfrac><msub><mrow><mo>∫</mo></mrow><mrow><mi>Ω</mi></mrow></msub><mi>g</mi><mrow><mo>(</mo><mi>u</mi><mo>)</mo></mrow></mrow></math></span>, whenever <span><math><mrow><mi>τ</mi><mo>=</mo><mn>0</mn></mrow></math></span> if moreover one among (I), (II), (III) is fulfilled.</p><p>Our research partially improves and extends some results derived in Jiao et al. (2024); Ren and Liu (2020); Chiyo and Yokota (2022); Columbu et al. (2023).</p></div>","PeriodicalId":49745,"journal":{"name":"Nonlinear Analysis-Real World Applications","volume":"79 ","pages":"Article 104135"},"PeriodicalIF":1.8000,"publicationDate":"2024-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1468121824000750/pdfft?md5=7ea2ce86ba1b3e1921a481bb478cddb6&pid=1-s2.0-S1468121824000750-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nonlinear Analysis-Real World Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1468121824000750","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
The following fully nonlinear attraction–repulsion and zero-flux chemotaxis model is studied: ()Herein, is a bounded and smooth domain of , for , proper positive numbers, , and and regular functions that generalize the prototypes and , for some and all . Moreover, , and is the maximal interval of existence of solutions to the model. Once suitable initial data are fixed, we are interested in deriving sufficient conditions implying globality (i.e., ) and boundedness (i.e., for all ) of solutions to problem (1). This is achieved in the following scenarios:
For proportional to and to , whenever and provided one of the following conditions
(I) , (II) , (III)
is accomplished or in conjunction with one of these restrictions
(i) , (ii) ,
(iii) and , (iv) and ;
For and , whenever if moreover one among (I), (II), (III) is fulfilled.
Our research partially improves and extends some results derived in Jiao et al. (2024); Ren and Liu (2020); Chiyo and Yokota (2022); Columbu et al. (2023).
期刊介绍:
Nonlinear Analysis: Real World Applications welcomes all research articles of the highest quality with special emphasis on applying techniques of nonlinear analysis to model and to treat nonlinear phenomena with which nature confronts us. Coverage of applications includes any branch of science and technology such as solid and fluid mechanics, material science, mathematical biology and chemistry, control theory, and inverse problems.
The aim of Nonlinear Analysis: Real World Applications is to publish articles which are predominantly devoted to employing methods and techniques from analysis, including partial differential equations, functional analysis, dynamical systems and evolution equations, calculus of variations, and bifurcations theory.