首页 > 最新文献

Nonlinear Analysis-Real World Applications最新文献

英文 中文
Higher fractional differentiability for solutions to parabolic equations with double-phase growth 双相增长抛物型方程解的高分数可微性
IF 1.8 3区 数学 Q1 MATHEMATICS, APPLIED Pub Date : 2024-11-30 DOI: 10.1016/j.nonrwa.2024.104270
Lijing Zhao, Shenzhou Zheng
<div><div>We devote this paper to a higher fractional differentiability of solutions for a class of parabolic double-phase equations <span><span><span><math><mrow><msub><mrow><mi>∂</mi></mrow><mrow><mi>t</mi></mrow></msub><mi>u</mi><mo>−</mo><mtext>div</mtext><mfenced><mrow><msup><mrow><mrow><mo>|</mo><mi>D</mi><mi>u</mi><mo>|</mo></mrow></mrow><mrow><mi>p</mi><mo>−</mo><mn>2</mn></mrow></msup><mi>D</mi><mi>u</mi><mo>+</mo><mi>a</mi><mrow><mo>(</mo><mi>x</mi><mo>,</mo><mi>t</mi><mo>)</mo></mrow><msup><mrow><mrow><mo>|</mo><mi>D</mi><mi>u</mi><mo>|</mo></mrow></mrow><mrow><mi>q</mi><mo>−</mo><mn>2</mn></mrow></msup><mi>D</mi><mi>u</mi></mrow></mfenced><mo>=</mo><mo>−</mo><mtext>div</mtext><mfenced><mrow><msup><mrow><mrow><mo>|</mo><mi>F</mi><mo>|</mo></mrow></mrow><mrow><mi>p</mi><mo>−</mo><mn>2</mn></mrow></msup><mi>F</mi><mo>+</mo><mi>a</mi><mrow><mo>(</mo><mi>x</mi><mo>,</mo><mi>t</mi><mo>)</mo></mrow><msup><mrow><mrow><mo>|</mo><mi>F</mi><mo>|</mo></mrow></mrow><mrow><mi>q</mi><mo>−</mo><mn>2</mn></mrow></msup><mi>F</mi></mrow></mfenced><mspace></mspace><mtext>in</mtext><mspace></mspace><mspace></mspace><msub><mrow><mi>Ω</mi></mrow><mrow><mi>T</mi></mrow></msub><mo>.</mo></mrow></math></span></span></span>A higher fractional differentiability of spatial gradients is established by way of the finite difference quotient, under assumptions that <span><math><mrow><mn>0</mn><mo>≤</mo><mi>a</mi><mrow><mo>(</mo><mi>x</mi><mo>,</mo><mi>t</mi><mo>)</mo></mrow><mo>∈</mo><msup><mrow><mi>C</mi></mrow><mrow><mi>α</mi><mo>,</mo><mfrac><mrow><mi>α</mi></mrow><mrow><mn>2</mn></mrow></mfrac></mrow></msup><mrow><mo>(</mo><msub><mrow><mi>Ω</mi></mrow><mrow><mi>T</mi></mrow></msub><mo>)</mo></mrow></mrow></math></span> for <span><math><mrow><mi>α</mi><mo>∈</mo><mrow><mo>(</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>]</mo></mrow></mrow></math></span>, the exponents <span><math><mrow><mi>p</mi><mo>,</mo><mi>q</mi></mrow></math></span> satisfies <span><math><mrow><mn>2</mn><mo>≤</mo><mi>p</mi><mo>≤</mo><mi>q</mi><mo>≤</mo><mi>p</mi><mo>+</mo><mfrac><mrow><mn>2</mn><mi>α</mi></mrow><mrow><mi>n</mi><mo>+</mo><mn>2</mn></mrow></mfrac></mrow></math></span>, and <span><math><mrow><mi>F</mi><mrow><mo>(</mo><mi>x</mi><mo>,</mo><mi>t</mi><mo>)</mo></mrow></mrow></math></span> belongs to <span><math><mrow><msubsup><mrow><mi>L</mi></mrow><mrow><mi>l</mi><mi>o</mi><mi>c</mi></mrow><mrow><mi>ϑ</mi></mrow></msubsup><mrow><mo>(</mo><mrow><mn>0</mn><mo>,</mo><mi>T</mi><mo>;</mo><msubsup><mrow><mi>B</mi></mrow><mrow><mi>Φ</mi><mo>,</mo><mi>∞</mi><mo>;</mo><mi>l</mi><mi>o</mi><mi>c</mi></mrow><mrow><mspace></mspace><mi>β</mi></mrow></msubsup><mrow><mo>(</mo><mi>Ω</mi><mo>)</mo></mrow></mrow><mo>)</mo></mrow></mrow></math></span> for <span><math><mrow><mn>0</mn><mo><</mo><mi>β</mi><mo><</mo><mn>1</mn></mrow></math></span> and <span><math><mrow><mi>ϑ</mi><mo>≔</mo><mo>max</mo><mrow><mo>{</mo><mfrac><mrow><mi>q</mi><mrow><mo>(</mo><mn>2</mn><mi>q</mi><mo>−</mo><mi>p</mi><mo>)</mo></mro
本文研究一类抛物型双相方程∂tu - div|Du|p - 2Du+a(x,t)|Du|q - 2Du= - div|F|p - 2F+a(x,t)|F|q−2FinΩT解的高分数可微性。在假设0≤A (x,t)∈Cα,α2(ΩT)对于α∈(0,1),指数p,q满足2≤p≤q≤p+2αn+2, F(x,t)属于lloc(0, t; BΦ,∞;loloc(Ω))对于0<;β<1,和{q(2q−p)p,q+1},其中BΦ,∞;loloc是局部besovo - orlicz空间,利用有限差分商建立空间梯度的高分数可微性。
{"title":"Higher fractional differentiability for solutions to parabolic equations with double-phase growth","authors":"Lijing Zhao,&nbsp;Shenzhou Zheng","doi":"10.1016/j.nonrwa.2024.104270","DOIUrl":"10.1016/j.nonrwa.2024.104270","url":null,"abstract":"&lt;div&gt;&lt;div&gt;We devote this paper to a higher fractional differentiability of solutions for a class of parabolic double-phase equations &lt;span&gt;&lt;span&gt;&lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;∂&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;t&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mi&gt;u&lt;/mi&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;mtext&gt;div&lt;/mtext&gt;&lt;mfenced&gt;&lt;mrow&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mrow&gt;&lt;mo&gt;|&lt;/mo&gt;&lt;mi&gt;D&lt;/mi&gt;&lt;mi&gt;u&lt;/mi&gt;&lt;mo&gt;|&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;p&lt;/mi&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;mi&gt;D&lt;/mi&gt;&lt;mi&gt;u&lt;/mi&gt;&lt;mo&gt;+&lt;/mo&gt;&lt;mi&gt;a&lt;/mi&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;x&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;t&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mrow&gt;&lt;mo&gt;|&lt;/mo&gt;&lt;mi&gt;D&lt;/mi&gt;&lt;mi&gt;u&lt;/mi&gt;&lt;mo&gt;|&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;q&lt;/mi&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;mi&gt;D&lt;/mi&gt;&lt;mi&gt;u&lt;/mi&gt;&lt;/mrow&gt;&lt;/mfenced&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;mtext&gt;div&lt;/mtext&gt;&lt;mfenced&gt;&lt;mrow&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mrow&gt;&lt;mo&gt;|&lt;/mo&gt;&lt;mi&gt;F&lt;/mi&gt;&lt;mo&gt;|&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;p&lt;/mi&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;mi&gt;F&lt;/mi&gt;&lt;mo&gt;+&lt;/mo&gt;&lt;mi&gt;a&lt;/mi&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;x&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;t&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mrow&gt;&lt;mo&gt;|&lt;/mo&gt;&lt;mi&gt;F&lt;/mi&gt;&lt;mo&gt;|&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;q&lt;/mi&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;mi&gt;F&lt;/mi&gt;&lt;/mrow&gt;&lt;/mfenced&gt;&lt;mspace&gt;&lt;/mspace&gt;&lt;mtext&gt;in&lt;/mtext&gt;&lt;mspace&gt;&lt;/mspace&gt;&lt;mspace&gt;&lt;/mspace&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;Ω&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;T&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;.&lt;/mo&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt;&lt;/span&gt;&lt;/span&gt;A higher fractional differentiability of spatial gradients is established by way of the finite difference quotient, under assumptions that &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;mo&gt;≤&lt;/mo&gt;&lt;mi&gt;a&lt;/mi&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;x&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;t&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;mo&gt;∈&lt;/mo&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;C&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;α&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mfrac&gt;&lt;mrow&gt;&lt;mi&gt;α&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/mfrac&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;Ω&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;T&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt; for &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mi&gt;α&lt;/mi&gt;&lt;mo&gt;∈&lt;/mo&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;mo&gt;]&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt;, the exponents &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mi&gt;p&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;q&lt;/mi&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt; satisfies &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;mo&gt;≤&lt;/mo&gt;&lt;mi&gt;p&lt;/mi&gt;&lt;mo&gt;≤&lt;/mo&gt;&lt;mi&gt;q&lt;/mi&gt;&lt;mo&gt;≤&lt;/mo&gt;&lt;mi&gt;p&lt;/mi&gt;&lt;mo&gt;+&lt;/mo&gt;&lt;mfrac&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;mi&gt;α&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;mo&gt;+&lt;/mo&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/mfrac&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt;, and &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mi&gt;F&lt;/mi&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;x&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;t&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt; belongs to &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;msubsup&gt;&lt;mrow&gt;&lt;mi&gt;L&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;l&lt;/mi&gt;&lt;mi&gt;o&lt;/mi&gt;&lt;mi&gt;c&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;ϑ&lt;/mi&gt;&lt;/mrow&gt;&lt;/msubsup&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mrow&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;T&lt;/mi&gt;&lt;mo&gt;;&lt;/mo&gt;&lt;msubsup&gt;&lt;mrow&gt;&lt;mi&gt;B&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;Φ&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;∞&lt;/mi&gt;&lt;mo&gt;;&lt;/mo&gt;&lt;mi&gt;l&lt;/mi&gt;&lt;mi&gt;o&lt;/mi&gt;&lt;mi&gt;c&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mspace&gt;&lt;/mspace&gt;&lt;mi&gt;β&lt;/mi&gt;&lt;/mrow&gt;&lt;/msubsup&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;Ω&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt; for &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;mo&gt;&lt;&lt;/mo&gt;&lt;mi&gt;β&lt;/mi&gt;&lt;mo&gt;&lt;&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt; and &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mi&gt;ϑ&lt;/mi&gt;&lt;mo&gt;≔&lt;/mo&gt;&lt;mo&gt;max&lt;/mo&gt;&lt;mrow&gt;&lt;mo&gt;{&lt;/mo&gt;&lt;mfrac&gt;&lt;mrow&gt;&lt;mi&gt;q&lt;/mi&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;mi&gt;q&lt;/mi&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;mi&gt;p&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mro","PeriodicalId":49745,"journal":{"name":"Nonlinear Analysis-Real World Applications","volume":"84 ","pages":"Article 104270"},"PeriodicalIF":1.8,"publicationDate":"2024-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142757322","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
N-wave-like properties for entropy solutions to scalar parabolic–hyperbolic conservation laws 标量抛物-双曲守恒律熵解的类n波性质
IF 1.8 3区 数学 Q1 MATHEMATICS, APPLIED Pub Date : 2024-11-29 DOI: 10.1016/j.nonrwa.2024.104265
Hiroshi Watanabe
In this paper, we consider qualitative properties for entropy solutions to one-dimensional Cauchy problems (CP) for scalar parabolic–hyperbolic conservation laws. Since the equations have both properties of hyperbolic equations and those of parabolic equations, it is difficult to investigate the behavior of solutions to (CP). In our previous works, we focused on the traveling wave structure instead of the self-similar structure. In fact, we succeeded in constructing shock wave type traveling waves with multiple discontinuity. Moreover, we constructed rarefaction wave type sub-, super-solutions to (CP) and investigated their properties.
In the present paper, we investigate “N-wave-like properties” for entropy solutions to (CP) while we are not able to construct an analogue of N-waves. In particular, we derive generalized one-sided Lipschitz estimates (Oleinik type entropy estimates) and decay estimates for entropy solutions to (CP). Based on the decay estimates, we discuss the asymptotic profiles of entropy solutions to (CP) under some specific setting.
本文研究一维柯西问题(CP)的标量抛物-双曲守恒律熵解的定性性质。由于该方程既有双曲型方程的性质,又有抛物型方程的性质,因此很难研究其解的性质。在我们之前的工作中,我们关注的是行波结构,而不是自相似结构。实际上,我们成功地构造了具有多重不连续的激波型行波。此外,我们构造了(CP)的稀疏波型亚、超解,并研究了它们的性质。在本文中,我们研究了(CP)的熵解的“类n波性质”,而我们无法构造n波的模拟。特别地,我们导出了(CP)的熵解的广义单侧Lipschitz估计(Oleinik型熵估计)和衰减估计。在衰减估计的基础上,讨论了在特定条件下(CP)的熵解的渐近分布。
{"title":"N-wave-like properties for entropy solutions to scalar parabolic–hyperbolic conservation laws","authors":"Hiroshi Watanabe","doi":"10.1016/j.nonrwa.2024.104265","DOIUrl":"10.1016/j.nonrwa.2024.104265","url":null,"abstract":"<div><div>In this paper, we consider qualitative properties for entropy solutions to one-dimensional Cauchy problems (CP) for scalar parabolic–hyperbolic conservation laws. Since the equations have both properties of hyperbolic equations and those of parabolic equations, it is difficult to investigate the behavior of solutions to (CP). In our previous works, we focused on the traveling wave structure instead of the self-similar structure. In fact, we succeeded in constructing shock wave type traveling waves with multiple discontinuity. Moreover, we constructed rarefaction wave type sub-, super-solutions to (CP) and investigated their properties.</div><div>In the present paper, we investigate “<span><math><mi>N</mi></math></span>-wave-like properties” for entropy solutions to (CP) while we are not able to construct an analogue of <span><math><mi>N</mi></math></span>-waves. In particular, we derive generalized one-sided Lipschitz estimates (Oleinik type entropy estimates) and decay estimates for entropy solutions to (CP). Based on the decay estimates, we discuss the asymptotic profiles of entropy solutions to (CP) under some specific setting.</div></div>","PeriodicalId":49745,"journal":{"name":"Nonlinear Analysis-Real World Applications","volume":"84 ","pages":"Article 104265"},"PeriodicalIF":1.8,"publicationDate":"2024-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142745191","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Analysis of a Navier–Stokes phase-field crystal system 纳维-斯托克斯相场晶体系统分析
IF 1.8 3区 数学 Q1 MATHEMATICS, APPLIED Pub Date : 2024-11-22 DOI: 10.1016/j.nonrwa.2024.104263
Cecilia Cavaterra , Maurizio Grasselli , Muhammed Ali Mehmood , Riccardo Voso
We consider an evolution system modeling a flow of colloidal particles which are suspended in an incompressible fluid and accounts for colloidal crystallization. The system consists of the Navier–Stokes equations for the volume averaged velocity coupled with the so-called Phase-Field Crystal equation for the density deviation. Considering this system in a periodic domain and assuming that the viscosity as well as the mobility depend on the density deviation, we first prove the existence of a weak solution in dimension three. Then, in dimension two, we establish the existence of a (unique) strong solution.
我们考虑了一个模拟悬浮在不可压缩流体中的胶体粒子流动的演化系统,并考虑了胶体结晶。该系统由体积平均速度的纳维-斯托克斯方程和密度偏差的所谓相场晶体方程组成。考虑到这一系统在周期域中的存在,并假设粘度和流动性取决于密度偏差,我们首先证明了三维中弱解的存在。然后,在二维中,我们确定了一个(唯一的)强解的存在。
{"title":"Analysis of a Navier–Stokes phase-field crystal system","authors":"Cecilia Cavaterra ,&nbsp;Maurizio Grasselli ,&nbsp;Muhammed Ali Mehmood ,&nbsp;Riccardo Voso","doi":"10.1016/j.nonrwa.2024.104263","DOIUrl":"10.1016/j.nonrwa.2024.104263","url":null,"abstract":"<div><div>We consider an evolution system modeling a flow of colloidal particles which are suspended in an incompressible fluid and accounts for colloidal crystallization. The system consists of the Navier–Stokes equations for the volume averaged velocity coupled with the so-called Phase-Field Crystal equation for the density deviation. Considering this system in a periodic domain and assuming that the viscosity as well as the mobility depend on the density deviation, we first prove the existence of a weak solution in dimension three. Then, in dimension two, we establish the existence of a (unique) strong solution.</div></div>","PeriodicalId":49745,"journal":{"name":"Nonlinear Analysis-Real World Applications","volume":"83 ","pages":"Article 104263"},"PeriodicalIF":1.8,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142704854","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Wave breaking for the Degasperis–Procesi equation 德加斯佩里斯-普罗切斯方程的破浪作用
IF 1.8 3区 数学 Q1 MATHEMATICS, APPLIED Pub Date : 2024-11-22 DOI: 10.1016/j.nonrwa.2024.104262
Tiantian Zhao , Kai Yan
In the present study, we construct a new blow-up of strong solution to show wave breaking for the well-known Degasperis–Procesi equation. Unlike the previous related results for the shallow water wave models, no conservation law is used here.
在本研究中,我们为著名的 Degasperis-Procesi 方程构建了一个新的强解炸开,以显示波浪的破碎。与之前浅水波模型的相关结果不同,这里没有使用守恒定律。
{"title":"Wave breaking for the Degasperis–Procesi equation","authors":"Tiantian Zhao ,&nbsp;Kai Yan","doi":"10.1016/j.nonrwa.2024.104262","DOIUrl":"10.1016/j.nonrwa.2024.104262","url":null,"abstract":"<div><div>In the present study, we construct a new blow-up of strong solution to show wave breaking for the well-known Degasperis–Procesi equation. Unlike the previous related results for the shallow water wave models, no conservation law is used here.</div></div>","PeriodicalId":49745,"journal":{"name":"Nonlinear Analysis-Real World Applications","volume":"83 ","pages":"Article 104262"},"PeriodicalIF":1.8,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142704855","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A novel variable exponent PDE with dependency on γ(u,|∇u0,σ|) for image despeckling application 用于图像消斑的依赖于 γ(u,|∇u0,σ|) 的新型可变指数 PDE
IF 1.8 3区 数学 Q1 MATHEMATICS, APPLIED Pub Date : 2024-11-22 DOI: 10.1016/j.nonrwa.2024.104264
A. Nachaoui , A. Laghrib , A. Hadri , M. Nachaoui
Within the realm of image processing, image denoising holds significant importance. This study focuses on tackling denoising challenges posed by Speckle noise. We introduce a novel variable γ(u,|u0,σ|)-PDE-based denoising model, offering a fresh perspective. Our approach involves a unique class of PDEs, wherein the nonlinear structure relies on spatially nonlocal exponent dependent factors linked to the target solution and also its gradient. This innovation incorporates grayscale information by introducing the variable exponent γ, which controls much better the diffusion and incorporates information from wide regions. The existence and uniqueness of the proposed PDE are established through Galerkin’s approximation. Furthermore, a series of experiments are conducted for denoising, including comparisons with other models, in order to validate the selection of the variable exponent parameter. This research contributes to the advancement of image denoising methods with high theoretical foundations and potential implications for other applications.
在图像处理领域,图像去噪具有重要意义。本研究的重点是解决斑点噪声带来的去噪难题。我们引入了一个新颖的基于变量 γ(u,|∇u0,σ|)-PDE 的去噪模型,提供了一个全新的视角。我们的方法涉及一类独特的 PDE,其中的非线性结构依赖于与目标解及其梯度相关的空间非局部指数因子。这种创新通过引入可变指数 γ 来纳入灰度信息,从而更好地控制扩散并纳入来自广泛区域的信息。通过伽勒金近似,确定了所提出的 PDE 的存在性和唯一性。此外,还进行了一系列去噪实验,包括与其他模型的比较,以验证可变指数参数的选择。这项研究为图像去噪方法的发展做出了贡献,具有很高的理论基础,并对其他应用具有潜在影响。
{"title":"A novel variable exponent PDE with dependency on γ(u,|∇u0,σ|) for image despeckling application","authors":"A. Nachaoui ,&nbsp;A. Laghrib ,&nbsp;A. Hadri ,&nbsp;M. Nachaoui","doi":"10.1016/j.nonrwa.2024.104264","DOIUrl":"10.1016/j.nonrwa.2024.104264","url":null,"abstract":"<div><div>Within the realm of image processing, image denoising holds significant importance. This study focuses on tackling denoising challenges posed by Speckle noise. We introduce a novel variable <span><math><mrow><mi>γ</mi><mrow><mo>(</mo><mi>u</mi><mo>,</mo><mrow><mo>|</mo><mo>∇</mo><msub><mrow><mi>u</mi></mrow><mrow><mn>0</mn><mo>,</mo><mi>σ</mi></mrow></msub><mo>|</mo></mrow><mo>)</mo></mrow></mrow></math></span>-PDE-based denoising model, offering a fresh perspective. Our approach involves a unique class of PDEs, wherein the nonlinear structure relies on spatially nonlocal exponent dependent factors linked to the target solution and also its gradient. This innovation incorporates grayscale information by introducing the variable exponent <span><math><mi>γ</mi></math></span>, which controls much better the diffusion and incorporates information from wide regions. The existence and uniqueness of the proposed PDE are established through Galerkin’s approximation. Furthermore, a series of experiments are conducted for denoising, including comparisons with other models, in order to validate the selection of the variable exponent parameter. This research contributes to the advancement of image denoising methods with high theoretical foundations and potential implications for other applications.</div></div>","PeriodicalId":49745,"journal":{"name":"Nonlinear Analysis-Real World Applications","volume":"83 ","pages":"Article 104264"},"PeriodicalIF":1.8,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142704857","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Global existence and boundedness of solutions to a two-dimensional forager-exploiter model with/without logistic source 有/无逻辑源的二维觅食者-开发者模型解的全局存在性和有界性
IF 1.8 3区 数学 Q1 MATHEMATICS, APPLIED Pub Date : 2024-11-20 DOI: 10.1016/j.nonrwa.2024.104261
Shengfeng Zhao, Li Xie
<div><div>This paper is focused on the zero-flux initial–boundary value problem for a forager-exploiter model of the form <span><span><span><math><mfenced><mrow><mtable><mtr><mtd></mtd><mtd><msub><mrow><mi>u</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>=</mo><mi>Δ</mi><mi>u</mi><mo>−</mo><mo>∇</mo><mi>⋅</mi><mrow><mo>(</mo><mi>u</mi><mo>∇</mo><mi>w</mi><mo>)</mo></mrow><mo>+</mo><msub><mrow><mi>μ</mi></mrow><mrow><mn>1</mn></mrow></msub><mrow><mo>(</mo><mi>u</mi><mo>−</mo><msup><mrow><mi>u</mi></mrow><mrow><mi>m</mi></mrow></msup><mo>)</mo></mrow><mo>,</mo></mtd><mtd></mtd><mtd><mi>x</mi><mo>∈</mo><mi>Ω</mi><mo>,</mo><mspace></mspace><mi>t</mi><mo>></mo><mn>0</mn><mo>,</mo></mtd></mtr><mtr><mtd></mtd><mtd><msub><mrow><mi>v</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>=</mo><mi>Δ</mi><mi>v</mi><mo>−</mo><mo>∇</mo><mi>⋅</mi><mrow><mo>(</mo><mi>v</mi><mo>∇</mo><mi>u</mi><mo>)</mo></mrow><mo>+</mo><msub><mrow><mi>μ</mi></mrow><mrow><mn>2</mn></mrow></msub><mrow><mo>(</mo><mi>v</mi><mo>−</mo><msup><mrow><mi>v</mi></mrow><mrow><mi>l</mi></mrow></msup><mo>)</mo></mrow><mo>,</mo></mtd><mtd></mtd><mtd><mi>x</mi><mo>∈</mo><mi>Ω</mi><mo>,</mo><mspace></mspace><mi>t</mi><mo>></mo><mn>0</mn><mo>,</mo></mtd></mtr><mtr><mtd></mtd><mtd><msub><mrow><mi>w</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>=</mo><mi>Δ</mi><mi>w</mi><mo>−</mo><mi>f</mi><mrow><mo>(</mo><mi>u</mi><mo>)</mo></mrow><mi>w</mi><mo>−</mo><mi>g</mi><mrow><mo>(</mo><mi>v</mi><mo>)</mo></mrow><mi>w</mi><mo>−</mo><mi>μ</mi><mi>w</mi><mo>+</mo><mi>r</mi><mrow><mo>(</mo><mi>x</mi><mo>,</mo><mi>t</mi><mo>)</mo></mrow><mo>,</mo></mtd><mtd></mtd><mtd><mi>x</mi><mo>∈</mo><mi>Ω</mi><mo>,</mo><mspace></mspace><mi>t</mi><mo>></mo><mn>0</mn><mo>,</mo></mtd></mtr></mtable></mrow></mfenced></math></span></span></span>in a smoothly bounded domain <span><math><mrow><mi>Ω</mi><mo>⊂</mo><msup><mrow><mi>R</mi></mrow><mrow><mn>2</mn></mrow></msup></mrow></math></span>, where <span><math><mi>μ</mi></math></span>, <span><math><msub><mrow><mi>μ</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span>, <span><math><msub><mrow><mi>μ</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span>, <span><math><mi>m</mi></math></span>, <span><math><mi>l</mi></math></span> are positive constants, <span><math><mrow><mi>r</mi><mrow><mo>(</mo><mi>x</mi><mo>,</mo><mi>t</mi><mo>)</mo></mrow><mo>∈</mo><msup><mrow><mi>C</mi></mrow><mrow><mn>1</mn></mrow></msup><mrow><mo>(</mo><mover><mrow><mi>Ω</mi></mrow><mo>¯</mo></mover><mo>×</mo><mrow><mo>[</mo><mn>0</mn><mo>,</mo><mi>∞</mi><mo>)</mo></mrow><mo>)</mo></mrow><mo>∩</mo><msup><mrow><mi>L</mi></mrow><mrow><mi>∞</mi></mrow></msup><mrow><mo>(</mo><mi>Ω</mi><mo>×</mo><mrow><mo>(</mo><mn>0</mn><mo>,</mo><mi>∞</mi><mo>)</mo></mrow><mo>)</mo></mrow></mrow></math></span> is a given nonnegative function, the functions <span><math><mrow><mi>f</mi><mo>,</mo><mspace></mspace><mi>g</mi><mo>∈</mo><msup><mrow><mi>C</mi></mrow><mrow><mn>1</mn></mrow></msup><mrow><mo>[</mo><mn>0</mn><mo>,</mo><mi>
本文主要研究觅食者-开发者模型的零流量初始边界值问题,其形式为 ut=Δu-∇⋅(u∇w)+μ1(u-um),x∈Ω,t>;0,vt=Δv-∇⋅(v∇u)+μ2(v-vl),x∈Ω,t>0,wt=Δw-f(u)w-g(v)w-μw+r(x,t),x∈Ω,t>;0,in a smooth bounded domain Ω⊂R2, where μ, μ1, μ2, m, l are positive constants, r(x,t)∈C1(Ω¯×[0,∞))∩L∞(Ω×(0,∞)) is a given nonnegative function、假设函数 f,g∈C1[0,∞]的性质分别类似于 uα,vβ,并有一些正常数 α 和 β。结果表明,只要 m≥1 , l≥1, α≤m2 和 β<l2, 初界值问题就具有全局有界经典解。
{"title":"Global existence and boundedness of solutions to a two-dimensional forager-exploiter model with/without logistic source","authors":"Shengfeng Zhao,&nbsp;Li Xie","doi":"10.1016/j.nonrwa.2024.104261","DOIUrl":"10.1016/j.nonrwa.2024.104261","url":null,"abstract":"&lt;div&gt;&lt;div&gt;This paper is focused on the zero-flux initial–boundary value problem for a forager-exploiter model of the form &lt;span&gt;&lt;span&gt;&lt;span&gt;&lt;math&gt;&lt;mfenced&gt;&lt;mrow&gt;&lt;mtable&gt;&lt;mtr&gt;&lt;mtd&gt;&lt;/mtd&gt;&lt;mtd&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;u&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;t&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mi&gt;Δ&lt;/mi&gt;&lt;mi&gt;u&lt;/mi&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;mo&gt;∇&lt;/mo&gt;&lt;mi&gt;⋅&lt;/mi&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;u&lt;/mi&gt;&lt;mo&gt;∇&lt;/mo&gt;&lt;mi&gt;w&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;mo&gt;+&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;μ&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;u&lt;/mi&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;u&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;m&lt;/mi&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;/mtd&gt;&lt;mtd&gt;&lt;/mtd&gt;&lt;mtd&gt;&lt;mi&gt;x&lt;/mi&gt;&lt;mo&gt;∈&lt;/mo&gt;&lt;mi&gt;Ω&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mspace&gt;&lt;/mspace&gt;&lt;mi&gt;t&lt;/mi&gt;&lt;mo&gt;&gt;&lt;/mo&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;/mtd&gt;&lt;/mtr&gt;&lt;mtr&gt;&lt;mtd&gt;&lt;/mtd&gt;&lt;mtd&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;v&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;t&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mi&gt;Δ&lt;/mi&gt;&lt;mi&gt;v&lt;/mi&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;mo&gt;∇&lt;/mo&gt;&lt;mi&gt;⋅&lt;/mi&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;v&lt;/mi&gt;&lt;mo&gt;∇&lt;/mo&gt;&lt;mi&gt;u&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;mo&gt;+&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;μ&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;v&lt;/mi&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;v&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;l&lt;/mi&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;/mtd&gt;&lt;mtd&gt;&lt;/mtd&gt;&lt;mtd&gt;&lt;mi&gt;x&lt;/mi&gt;&lt;mo&gt;∈&lt;/mo&gt;&lt;mi&gt;Ω&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mspace&gt;&lt;/mspace&gt;&lt;mi&gt;t&lt;/mi&gt;&lt;mo&gt;&gt;&lt;/mo&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;/mtd&gt;&lt;/mtr&gt;&lt;mtr&gt;&lt;mtd&gt;&lt;/mtd&gt;&lt;mtd&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;w&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;t&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mi&gt;Δ&lt;/mi&gt;&lt;mi&gt;w&lt;/mi&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;mi&gt;f&lt;/mi&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;u&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;mi&gt;w&lt;/mi&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;mi&gt;g&lt;/mi&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;v&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;mi&gt;w&lt;/mi&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;mi&gt;μ&lt;/mi&gt;&lt;mi&gt;w&lt;/mi&gt;&lt;mo&gt;+&lt;/mo&gt;&lt;mi&gt;r&lt;/mi&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;x&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;t&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;/mtd&gt;&lt;mtd&gt;&lt;/mtd&gt;&lt;mtd&gt;&lt;mi&gt;x&lt;/mi&gt;&lt;mo&gt;∈&lt;/mo&gt;&lt;mi&gt;Ω&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mspace&gt;&lt;/mspace&gt;&lt;mi&gt;t&lt;/mi&gt;&lt;mo&gt;&gt;&lt;/mo&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;/mtd&gt;&lt;/mtr&gt;&lt;/mtable&gt;&lt;/mrow&gt;&lt;/mfenced&gt;&lt;/math&gt;&lt;/span&gt;&lt;/span&gt;&lt;/span&gt;in a smoothly bounded domain &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mi&gt;Ω&lt;/mi&gt;&lt;mo&gt;⊂&lt;/mo&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;R&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt;, where &lt;span&gt;&lt;math&gt;&lt;mi&gt;μ&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt;, &lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;μ&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/math&gt;&lt;/span&gt;, &lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;μ&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/math&gt;&lt;/span&gt;, &lt;span&gt;&lt;math&gt;&lt;mi&gt;m&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt;, &lt;span&gt;&lt;math&gt;&lt;mi&gt;l&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt; are positive constants, &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mi&gt;r&lt;/mi&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;x&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;t&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;mo&gt;∈&lt;/mo&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;C&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mover&gt;&lt;mrow&gt;&lt;mi&gt;Ω&lt;/mi&gt;&lt;/mrow&gt;&lt;mo&gt;¯&lt;/mo&gt;&lt;/mover&gt;&lt;mo&gt;×&lt;/mo&gt;&lt;mrow&gt;&lt;mo&gt;[&lt;/mo&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;∞&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;mo&gt;∩&lt;/mo&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;L&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;∞&lt;/mi&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;Ω&lt;/mi&gt;&lt;mo&gt;×&lt;/mo&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;∞&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt; is a given nonnegative function, the functions &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mi&gt;f&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mspace&gt;&lt;/mspace&gt;&lt;mi&gt;g&lt;/mi&gt;&lt;mo&gt;∈&lt;/mo&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;C&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;mrow&gt;&lt;mo&gt;[&lt;/mo&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;","PeriodicalId":49745,"journal":{"name":"Nonlinear Analysis-Real World Applications","volume":"83 ","pages":"Article 104261"},"PeriodicalIF":1.8,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142704853","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A class of nonlinear parabolic PDEs with variable growth structure applied to multi-frame MRI super-resolution 一类具有可变增长结构的非线性抛物 PDEs 应用于多帧 MRI 超分辨率
IF 1.8 3区 数学 Q1 MATHEMATICS, APPLIED Pub Date : 2024-11-20 DOI: 10.1016/j.nonrwa.2024.104259
Abderrahim Charkaoui , Anouar Ben-Loghfyry
This research paper proposes a novel parabolic model driven by a nonlinear operator with a variable exponent applied to multi-frame image super-resolution. Our idea is based essentially on enhancing the classical image super-resolution models by considering novel regularized terms involving p(x)-growth structure. This regularization leads to deriving a new nonlinear parabolic PDE with nonstandard growth conditions. We start initially by examining the theoretical solvability of our model. We employ the so-called variable exponents Lebesgue-Sobolev spaces to establish an appropriate functional framework for the theoretical investigation of our proposed model. We then apply the Faedo–Galerkin method to establish both the existence and uniqueness of a weak solution for the proposed model. To validate the effectiveness of our model in the multi-frame super resolution (SR) context, we conduct numerical experiments on Magnetic Resonance Images (MRI) featuring diverse characteristics, including corners and edges, while applying different warping, decimation and blurring matrices with noises on the low-resolution (LR) images. We initiate the evaluation by introducing an adaptive discrete scheme of the proposed model. To prove the robustness of our approach, we subject our images to varying levels of noise while conducting many behavior tests on some parameters with major contributions. Additionally, we perform simulations on real data (videos) to show the superiority of the proposed model. The obtained high resolution (HR) results demonstrate notable efficiency and robustness against noise, outperforming the competitive models visually and quantitatively.
本研究论文提出了一种由具有可变指数的非线性算子驱动的新型抛物线模型,并将其应用于多帧图像超分辨率。我们的想法主要是通过考虑涉及 p(x) 增长结构的新型正则化项来增强经典图像超分辨率模型。通过这种正则化,可以推导出具有非标准增长条件的新非线性抛物线 PDE。我们首先研究了模型的理论可解性。我们利用所谓的可变指数 Lebesgue-Sobolev 空间,为我们提出的模型的理论研究建立了一个适当的函数框架。然后,我们应用 Faedo-Galerkin 方法为所提模型建立弱解的存在性和唯一性。为了验证我们的模型在多帧超分辨率(SR)背景下的有效性,我们在具有不同特征(包括边角和边缘)的磁共振图像(MRI)上进行了数值实验,同时在低分辨率(LR)图像上应用了不同的扭曲、抽取和模糊矩阵以及噪声。我们通过引入所提模型的自适应离散方案来启动评估。为了证明我们方法的鲁棒性,我们对图像进行了不同程度的噪声处理,同时对一些有重大贡献的参数进行了许多行为测试。此外,我们还在真实数据(视频)上进行了模拟,以显示所提模型的优越性。所获得的高分辨率(HR)结果显示了显著的效率和对噪声的鲁棒性,在视觉上和定量上都优于竞争模型。
{"title":"A class of nonlinear parabolic PDEs with variable growth structure applied to multi-frame MRI super-resolution","authors":"Abderrahim Charkaoui ,&nbsp;Anouar Ben-Loghfyry","doi":"10.1016/j.nonrwa.2024.104259","DOIUrl":"10.1016/j.nonrwa.2024.104259","url":null,"abstract":"<div><div>This research paper proposes a novel parabolic model driven by a nonlinear operator with a variable exponent applied to multi-frame image super-resolution. Our idea is based essentially on enhancing the classical image super-resolution models by considering novel regularized terms involving <span><math><mrow><mi>p</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mrow></math></span>-growth structure. This regularization leads to deriving a new nonlinear parabolic PDE with nonstandard growth conditions. We start initially by examining the theoretical solvability of our model. We employ the so-called variable exponents Lebesgue-Sobolev spaces to establish an appropriate functional framework for the theoretical investigation of our proposed model. We then apply the <em>Faedo–Galerkin</em> method to establish both the existence and uniqueness of a weak solution for the proposed model. To validate the effectiveness of our model in the multi-frame super resolution (SR) context, we conduct numerical experiments on Magnetic Resonance Images (MRI) featuring diverse characteristics, including corners and edges, while applying different warping, decimation and blurring matrices with noises on the low-resolution (LR) images. We initiate the evaluation by introducing an adaptive discrete scheme of the proposed model. To prove the robustness of our approach, we subject our images to varying levels of noise while conducting many behavior tests on some parameters with major contributions. Additionally, we perform simulations on real data (videos) to show the superiority of the proposed model. The obtained high resolution (HR) results demonstrate notable efficiency and robustness against noise, outperforming the competitive models visually and quantitatively.</div></div>","PeriodicalId":49745,"journal":{"name":"Nonlinear Analysis-Real World Applications","volume":"83 ","pages":"Article 104259"},"PeriodicalIF":1.8,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142704858","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Undercompressive phase transitions for the model of fluid flows in a nozzle with discontinuous cross-sectional area 具有不连续截面积的喷嘴中流体流动模型的欠压缩相变
IF 1.8 3区 数学 Q1 MATHEMATICS, APPLIED Pub Date : 2024-11-16 DOI: 10.1016/j.nonrwa.2024.104260
Duong Xuan Vinh , Mai Duc Thanh , Nguyen Huu Hiep
Undercompressive phase transitions violating Lax shock inequalities in a model of fluid flows in a nozzle with discontinuous cross-section area are studied. The Riemann problem involving phase transitions is considered. Depending on the choice of admissibility criteria suitable for a specific application, one can obtain a Riemann solver, which may involve nonclassical shock wave. The resonance phenomenon is also observed as multiple shocks waves of the same speed can apparently appear in a single solution. The Riemann problem may admit a unique solution in some region, but may have up to three distinct solutions in other regions.
研究了具有不连续横截面积的喷嘴中流体流动模型中违反拉克斯冲击不等式的欠压相变。考虑了涉及相变的黎曼问题。根据适合特定应用的可接受性标准的选择,可以得到黎曼求解器,其中可能涉及非典型冲击波。共振现象也会被观察到,因为在一个求解中会明显出现多个相同速度的冲击波。黎曼问题在某些区域可能只有一个解,但在其他区域可能有多达三个不同的解。
{"title":"Undercompressive phase transitions for the model of fluid flows in a nozzle with discontinuous cross-sectional area","authors":"Duong Xuan Vinh ,&nbsp;Mai Duc Thanh ,&nbsp;Nguyen Huu Hiep","doi":"10.1016/j.nonrwa.2024.104260","DOIUrl":"10.1016/j.nonrwa.2024.104260","url":null,"abstract":"<div><div>Undercompressive phase transitions violating Lax shock inequalities in a model of fluid flows in a nozzle with discontinuous cross-section area are studied. The Riemann problem involving phase transitions is considered. Depending on the choice of admissibility criteria suitable for a specific application, one can obtain a Riemann solver, which may involve nonclassical shock wave. The resonance phenomenon is also observed as multiple shocks waves of the same speed can apparently appear in a single solution. The Riemann problem may admit a unique solution in some region, but may have up to three distinct solutions in other regions.</div></div>","PeriodicalId":49745,"journal":{"name":"Nonlinear Analysis-Real World Applications","volume":"82 ","pages":"Article 104260"},"PeriodicalIF":1.8,"publicationDate":"2024-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142659195","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Bifurcation results for a class of elliptic equations with a nonlocal reaction term and interior interface boundary conditions 一类具有非局部反应项和内部界面边界条件的椭圆方程的分岔结果
IF 1.8 3区 数学 Q1 MATHEMATICS, APPLIED Pub Date : 2024-11-16 DOI: 10.1016/j.nonrwa.2024.104258
Braulio B.V. Maia , Alânnio B. Nóbrega
In this paper, we study a class of elliptic problems with a interior interface condition, which arise in population dynamics. In these problems, each population lives in a subdomain and they interact in a common border, which acts as a geographical barrier. The main novelty in our work is the presence of a nonlocal reaction terms. To obtain our results we employ mainly bifurcation methods.
在本文中,我们研究了一类具有内部界面条件的椭圆问题,这些问题出现在人口动力学中。在这些问题中,每个种群都生活在一个子域中,它们在一个共同边界中相互作用,这个边界就像一个地理屏障。我们工作的主要新颖之处在于非局部反应项的存在。为了获得结果,我们主要采用了分岔方法。
{"title":"Bifurcation results for a class of elliptic equations with a nonlocal reaction term and interior interface boundary conditions","authors":"Braulio B.V. Maia ,&nbsp;Alânnio B. Nóbrega","doi":"10.1016/j.nonrwa.2024.104258","DOIUrl":"10.1016/j.nonrwa.2024.104258","url":null,"abstract":"<div><div>In this paper, we study a class of elliptic problems with a interior interface condition, which arise in population dynamics. In these problems, each population lives in a subdomain and they interact in a common border, which acts as a geographical barrier. The main novelty in our work is the presence of a nonlocal reaction terms. To obtain our results we employ mainly bifurcation methods.</div></div>","PeriodicalId":49745,"journal":{"name":"Nonlinear Analysis-Real World Applications","volume":"82 ","pages":"Article 104258"},"PeriodicalIF":1.8,"publicationDate":"2024-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142659196","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Dynamics of an intermittent HIV treatment using piecewise smooth vector fields with two switching manifolds 使用具有两个切换流形的片断平滑矢量场的间歇性艾滋病治疗动力学
IF 1.8 3区 数学 Q1 MATHEMATICS, APPLIED Pub Date : 2024-11-09 DOI: 10.1016/j.nonrwa.2024.104256
Tiago Carvalho , Jackson Cunha , Rodrigo Euzébio , Marco Florentino
In this paper we study the dynamics of a piecewise smooth vector field modeling an intermittent human immunodeficiency virus treatment where the patient is recurrently submitted and removed from drug administration. In fact, the protocol says that the drugs are administered when the level of CD4+ T defense cells is smaller than a fixed number CoffT. When the level of CD4+ T cells is greater than a fixed number ConT (distinct from CoffT) the drugs are not administered to provide a better recovery from side effects. Moreover, the orbits of the piecewise smooth vector fields are trapped within a compact set, which proves that the protocol controls the disease.
在本文中,我们研究了一个片断平滑矢量场的动力学模型,它模拟了一种间歇性人类免疫缺陷病毒治疗方法,在这种治疗方法中,病人会反复服药和停药。事实上,治疗方案规定,当 CD4+ T 防御细胞的水平小于一个固定的数字 CoffT 时,就会给药。当 CD4+ T 细胞的水平大于一个固定的数字 ConT(与 CoffT 不同)时,则不用药,以便更好地从副作用中恢复过来。此外,片断平滑矢量场的轨道被困在一个紧凑集合内,这证明该方案能控制疾病。
{"title":"Dynamics of an intermittent HIV treatment using piecewise smooth vector fields with two switching manifolds","authors":"Tiago Carvalho ,&nbsp;Jackson Cunha ,&nbsp;Rodrigo Euzébio ,&nbsp;Marco Florentino","doi":"10.1016/j.nonrwa.2024.104256","DOIUrl":"10.1016/j.nonrwa.2024.104256","url":null,"abstract":"<div><div>In this paper we study the dynamics of a piecewise smooth vector field modeling an intermittent human immunodeficiency virus treatment where the patient is recurrently submitted and removed from drug administration. In fact, the protocol says that the drugs are administered when the level of CD4<span><math><msup><mrow></mrow><mrow><mo>+</mo></mrow></msup></math></span> T defense cells is smaller than a fixed number <span><math><msubsup><mrow><mi>C</mi></mrow><mrow><mi>o</mi><mi>f</mi><mi>f</mi></mrow><mrow><mi>T</mi></mrow></msubsup></math></span>. When the level of CD4<span><math><msup><mrow></mrow><mrow><mo>+</mo></mrow></msup></math></span> T cells is greater than a fixed number <span><math><msubsup><mrow><mi>C</mi></mrow><mrow><mi>o</mi><mi>n</mi></mrow><mrow><mi>T</mi></mrow></msubsup></math></span> (distinct from <span><math><msubsup><mrow><mi>C</mi></mrow><mrow><mi>o</mi><mi>f</mi><mi>f</mi></mrow><mrow><mi>T</mi></mrow></msubsup></math></span>) the drugs are not administered to provide a better recovery from side effects. Moreover, the orbits of the piecewise smooth vector fields are trapped within a compact set, which proves that the protocol controls the disease.</div></div>","PeriodicalId":49745,"journal":{"name":"Nonlinear Analysis-Real World Applications","volume":"82 ","pages":"Article 104256"},"PeriodicalIF":1.8,"publicationDate":"2024-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142659198","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Nonlinear Analysis-Real World Applications
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1