SMI2PDB: A self-contained Python tool to generate atomistic systems of organic molecules using their SMILES notations

IF 1.3 Q3 COMPUTER SCIENCE, SOFTWARE ENGINEERING Software Impacts Pub Date : 2024-05-01 DOI:10.1016/j.simpa.2024.100655
Eli I. Assaf , Xueyan Liu , Peng Lin , Sandra Erkens
{"title":"SMI2PDB: A self-contained Python tool to generate atomistic systems of organic molecules using their SMILES notations","authors":"Eli I. Assaf ,&nbsp;Xueyan Liu ,&nbsp;Peng Lin ,&nbsp;Sandra Erkens","doi":"10.1016/j.simpa.2024.100655","DOIUrl":null,"url":null,"abstract":"<div><p>The advent of computational techniques, particularly atomistic simulations, has lessened the dependency on physical experiments in various scientific fields. Yet, the preparation complexity for simulations using platforms like LAMMPS and GROMACS persists. We introduce SMI2PDB, a Python tool that automates molecular systems assembly from SMILES to PDB format, easing molecular dynamics simulation setups. SMI2PDB manages molecule configuration and quantification effortlessly, establishes stable conformers, applies random rotations, and positions them in a simulation box with a Sobol sequence to reduce overlaps. This script facilitates the rapid preparation of complex organic mixtures for use in simulations, enhancing the exploration of novel materials.</p></div>","PeriodicalId":29771,"journal":{"name":"Software Impacts","volume":"20 ","pages":"Article 100655"},"PeriodicalIF":1.3000,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2665963824000435/pdfft?md5=a73c2dbc1a48279c141a3db56506561e&pid=1-s2.0-S2665963824000435-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Software Impacts","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2665963824000435","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0

Abstract

The advent of computational techniques, particularly atomistic simulations, has lessened the dependency on physical experiments in various scientific fields. Yet, the preparation complexity for simulations using platforms like LAMMPS and GROMACS persists. We introduce SMI2PDB, a Python tool that automates molecular systems assembly from SMILES to PDB format, easing molecular dynamics simulation setups. SMI2PDB manages molecule configuration and quantification effortlessly, establishes stable conformers, applies random rotations, and positions them in a simulation box with a Sobol sequence to reduce overlaps. This script facilitates the rapid preparation of complex organic mixtures for use in simulations, enhancing the exploration of novel materials.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
SMI2PDB:使用 SMILES 符号生成有机分子原子系统的独立 Python 工具
计算技术,尤其是原子模拟技术的出现,减轻了各科学领域对物理实验的依赖。然而,使用 LAMMPS 和 GROMACS 等平台进行模拟的准备工作仍然十分复杂。我们介绍的 SMI2PDB 是一款 Python 工具,可自动将分子系统从 SMILES 组装成 PDB 格式,从而简化分子动力学模拟设置。SMI2PDB 可以毫不费力地管理分子构型和定量,建立稳定的构象,应用随机旋转,并用 Sobol 序列将它们定位在模拟框中,以减少重叠。该脚本有助于在模拟中快速制备复杂的有机混合物,从而加强对新型材料的探索。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Software Impacts
Software Impacts Software
CiteScore
2.70
自引率
9.50%
发文量
0
审稿时长
16 days
期刊最新文献
KNNOR-Reg: A python package for oversampling in imbalanced regression pff-oc: A space–time phase-field fracture optimal control framework Synthetic dataset generation system for vehicle detection Multi-browser VE: Enhancing internet browsing experience through virtual reality DeepPack3D: A Python package for online 3D bin packing optimization by deep reinforcement learning and constructive heuristics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1