Xiaozhen Liang, Chenxi Hong, Jiaqi Chen, Yingying Wang, Mingge Yang
{"title":"A hybrid forecasting architecture for air passenger demand considering search engine data and spatial effect","authors":"Xiaozhen Liang, Chenxi Hong, Jiaqi Chen, Yingying Wang, Mingge Yang","doi":"10.1016/j.jairtraman.2024.102611","DOIUrl":null,"url":null,"abstract":"<div><p>As the global process of digitalization accelerates and breakthroughs in internet technology emerge, governments worldwide are advocating for data-driven decision-making, aiming to enhance public service efficiency and stimulate economic growth. Against this backdrop, this study focuses on utilizing search engine data (SED) to improve air passenger demand forecasting, responding to national policies aimed at enhancing data analysis capabilities and promoting the development of intelligent transportation systems; however, the existing research is confined to the exploration of the temporal dependency between SED and air passenger demand variables with ignoring the spatial dependency. In order to eliminate this blind spot and catch from various parts of tourist attention, this study proposes a novel SED-driven hybrid forecasting architecture inspired by the theory of spatial effect between adjacent tourist destinations. The architecture includes three main steps: (1) construction of spatial-temporal SED variables, based on two-stage data preprocessing method; (2) variable decomposition and reconstruction, based on TVF-EMD algorithm; (3) prediction of different components of air passenger demand, employed ARIMA model and IHGS-KELM based multi-model fusion strategy respectively, where the IHGS algorithm integrates the circle chaos initialization strategy and the nonlinear convergence factor strategy. To confirm the practical applicability of this hybrid architecture, five comparative experiments based on the actual dataset are designed. The principal results are concluded as follows: (1) spatial-temporal SED is conducive to a fairly accurate air passenger demand forecasting; (2) the multi-model fusion strategy can integrate the fortes of various types of prediction models to obtain better prediction accuracy; (3) the adaptive ensemble method based on IHGS-KELM can contribute to the upgradation of prediction performance of air passenger demand.</p></div>","PeriodicalId":14925,"journal":{"name":"Journal of Air Transport Management","volume":"118 ","pages":"Article 102611"},"PeriodicalIF":3.9000,"publicationDate":"2024-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Air Transport Management","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0969699724000760","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"TRANSPORTATION","Score":null,"Total":0}
引用次数: 0
Abstract
As the global process of digitalization accelerates and breakthroughs in internet technology emerge, governments worldwide are advocating for data-driven decision-making, aiming to enhance public service efficiency and stimulate economic growth. Against this backdrop, this study focuses on utilizing search engine data (SED) to improve air passenger demand forecasting, responding to national policies aimed at enhancing data analysis capabilities and promoting the development of intelligent transportation systems; however, the existing research is confined to the exploration of the temporal dependency between SED and air passenger demand variables with ignoring the spatial dependency. In order to eliminate this blind spot and catch from various parts of tourist attention, this study proposes a novel SED-driven hybrid forecasting architecture inspired by the theory of spatial effect between adjacent tourist destinations. The architecture includes three main steps: (1) construction of spatial-temporal SED variables, based on two-stage data preprocessing method; (2) variable decomposition and reconstruction, based on TVF-EMD algorithm; (3) prediction of different components of air passenger demand, employed ARIMA model and IHGS-KELM based multi-model fusion strategy respectively, where the IHGS algorithm integrates the circle chaos initialization strategy and the nonlinear convergence factor strategy. To confirm the practical applicability of this hybrid architecture, five comparative experiments based on the actual dataset are designed. The principal results are concluded as follows: (1) spatial-temporal SED is conducive to a fairly accurate air passenger demand forecasting; (2) the multi-model fusion strategy can integrate the fortes of various types of prediction models to obtain better prediction accuracy; (3) the adaptive ensemble method based on IHGS-KELM can contribute to the upgradation of prediction performance of air passenger demand.
期刊介绍:
The Journal of Air Transport Management (JATM) sets out to address, through high quality research articles and authoritative commentary, the major economic, management and policy issues facing the air transport industry today. It offers practitioners and academics an international and dynamic forum for analysis and discussion of these issues, linking research and practice and stimulating interaction between the two. The refereed papers in the journal cover all the major sectors of the industry (airlines, airports, air traffic management) as well as related areas such as tourism management and logistics. Papers are blind reviewed, normally by two referees, chosen for their specialist knowledge. The journal provides independent, original and rigorous analysis in the areas of: • Policy, regulation and law • Strategy • Operations • Marketing • Economics and finance • Sustainability