{"title":"Finite element modeling simulation of oxygen evolution during charging in lithium-oxygen batteries","authors":"Shotaro Hanada , Shuji Nakanishi , Yoshiharu Mukouyama","doi":"10.1016/j.elecom.2024.107752","DOIUrl":null,"url":null,"abstract":"<div><p>The quest for advanced energy storage solutions has intensified the focus on developing next-generation secondary batteries, with lithium-oxygen batteries (LOB) standing out for their superior theoretical gravimetric energy density. This study introduces a novel model-based approach to battery development, enabling the detailed analysis of charge–discharge cycles and oxygen evolution efficiency within a virtual environment. Our model distinctively simulates the oxidative decomposition of lithium peroxide (Li<sub>2</sub>O<sub>2</sub>) and differentiates between its formation through solution and surface pathways, addressing the complexities of the charging process and its multiple elementary steps. The developed model further categorizes the oxidative decomposition species into four distinct types, facilitating a comprehensive understanding of their interactions, voltage profile changes, and O<sub>2</sub> evolution within the battery's porous cathode. This approach not only enhances the understanding of battery behavior but also aids in refining the design of component materials, thereby propelling forward the development of LOBs with improved energy density and cycle performance.</p></div>","PeriodicalId":304,"journal":{"name":"Electrochemistry Communications","volume":"165 ","pages":"Article 107752"},"PeriodicalIF":4.7000,"publicationDate":"2024-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S138824812400095X/pdfft?md5=e657c02ea13fb818f45419a66633853d&pid=1-s2.0-S138824812400095X-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electrochemistry Communications","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S138824812400095X","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
引用次数: 0
Abstract
The quest for advanced energy storage solutions has intensified the focus on developing next-generation secondary batteries, with lithium-oxygen batteries (LOB) standing out for their superior theoretical gravimetric energy density. This study introduces a novel model-based approach to battery development, enabling the detailed analysis of charge–discharge cycles and oxygen evolution efficiency within a virtual environment. Our model distinctively simulates the oxidative decomposition of lithium peroxide (Li2O2) and differentiates between its formation through solution and surface pathways, addressing the complexities of the charging process and its multiple elementary steps. The developed model further categorizes the oxidative decomposition species into four distinct types, facilitating a comprehensive understanding of their interactions, voltage profile changes, and O2 evolution within the battery's porous cathode. This approach not only enhances the understanding of battery behavior but also aids in refining the design of component materials, thereby propelling forward the development of LOBs with improved energy density and cycle performance.
期刊介绍:
Electrochemistry Communications is an open access journal providing fast dissemination of short communications, full communications and mini reviews covering the whole field of electrochemistry which merit urgent publication. Short communications are limited to a maximum of 20,000 characters (including spaces) while full communications and mini reviews are limited to 25,000 characters (including spaces). Supplementary information is permitted for full communications and mini reviews but not for short communications. We aim to be the fastest journal in electrochemistry for these types of papers.