Universal liquid self-transport beneath a flexible superhydrophilic track

IF 17.3 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Matter Pub Date : 2024-05-16 DOI:10.1016/j.matt.2024.04.037
Moyuan Cao, Yuchen Qiu, Haoyu Bai, Xinsheng Wang, Zhe Li, Tianhong Zhao, Yaru Tian, Yuchen Wu, Lei Jiang
{"title":"Universal liquid self-transport beneath a flexible superhydrophilic track","authors":"Moyuan Cao, Yuchen Qiu, Haoyu Bai, Xinsheng Wang, Zhe Li, Tianhong Zhao, Yaru Tian, Yuchen Wu, Lei Jiang","doi":"10.1016/j.matt.2024.04.037","DOIUrl":null,"url":null,"abstract":"<p>Spontaneous liquid transport on an open surface offers a great opportunity to develop advanced systems with lower energy consumption and multifunction. Achieving universal liquid self-transport via a simplified carrier is highly desirable for fluid-controlling interfaces. Here, we present liquid self-transport beneath a flexible superhydrophilic track for versatile liquid manipulation. The capillary effect generated from the sandwiched channel drives directional liquid spreading with a speed ranging from 0.3 to 5 mm/s, which depends on the wettability and roughness of the paired substrates. Through the structural design and integration of channels, a series of applications such as pumpless microfluidic chips, interfacial evaporators, and portable electrolysis microchips have been demonstrated. We envision that this self-propelled liquid channel, with its extremely simple structure and high adaptability, will meet the requirements for efficient mass transfer and open new avenues for improving current systems in the fields of heat transfer, liquid harvester, microfluidics, etc.</p>","PeriodicalId":388,"journal":{"name":"Matter","volume":null,"pages":null},"PeriodicalIF":17.3000,"publicationDate":"2024-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Matter","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.matt.2024.04.037","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Spontaneous liquid transport on an open surface offers a great opportunity to develop advanced systems with lower energy consumption and multifunction. Achieving universal liquid self-transport via a simplified carrier is highly desirable for fluid-controlling interfaces. Here, we present liquid self-transport beneath a flexible superhydrophilic track for versatile liquid manipulation. The capillary effect generated from the sandwiched channel drives directional liquid spreading with a speed ranging from 0.3 to 5 mm/s, which depends on the wettability and roughness of the paired substrates. Through the structural design and integration of channels, a series of applications such as pumpless microfluidic chips, interfacial evaporators, and portable electrolysis microchips have been demonstrated. We envision that this self-propelled liquid channel, with its extremely simple structure and high adaptability, will meet the requirements for efficient mass transfer and open new avenues for improving current systems in the fields of heat transfer, liquid harvester, microfluidics, etc.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
柔性超亲水轨道下的通用液体自传输系统
开放表面上的自发液体传输为开发能耗更低、功能更多的先进系统提供了绝佳机会。通过简化的载体实现通用的液体自传输是流体控制界面非常需要的。在这里,我们介绍了在柔性超亲水轨道下的液体自传输,以实现多功能液体操控。夹层通道产生的毛细管效应推动液体定向扩散,扩散速度为 0.3 至 5 mm/s,取决于配对基底的润湿性和粗糙度。通过对通道的结构设计和整合,无泵微流控芯片、界面蒸发器和便携式电解微芯片等一系列应用已经得到验证。我们设想,这种自走式液体通道结构极其简单,适应性强,将满足高效传质的要求,并为改进传热、液体收集器、微流体等领域的现有系统开辟新的途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Matter
Matter MATERIALS SCIENCE, MULTIDISCIPLINARY-
CiteScore
26.30
自引率
2.60%
发文量
367
期刊介绍: Matter, a monthly journal affiliated with Cell, spans the broad field of materials science from nano to macro levels,covering fundamentals to applications. Embracing groundbreaking technologies,it includes full-length research articles,reviews, perspectives,previews, opinions, personnel stories, and general editorial content. Matter aims to be the primary resource for researchers in academia and industry, inspiring the next generation of materials scientists.
期刊最新文献
Sp-hybridized carbon enabled crystal lattice manipulation, pushing the limit of fill factor in β-CsPbI3 perovskite solar cells Overcoming thermal energy storage density limits by liquid water recharge in zeolite-polymer composites Open aerosol microfluidics enable orthogonal compartmentalized functionalization of hydrogel particles Discovery of a novel low-cost medium-entropy stainless steel with exceptional mechanical behavior over a wide temperature range Unlocking lithium ion conduction in lithium metal fluorides
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1