Comparison of the stage-dependent mitochondrial changes in response to pressure overload between the diseased right and left ventricle in the rat

IF 7.5 1区 医学 Q1 CARDIAC & CARDIOVASCULAR SYSTEMS Basic Research in Cardiology Pub Date : 2024-05-17 DOI:10.1007/s00395-024-01051-3
Ling Li, Bernd Niemann, Fabienne Knapp, Sebastian Werner, Christian Mühlfeld, Jan Philipp Schneider, Liane M. Jurida, Nicole Molenda, M. Lienhard Schmitz, Xiaoke Yin, Manuel Mayr, Rainer Schulz, Michael Kracht, Susanne Rohrbach
{"title":"Comparison of the stage-dependent mitochondrial changes in response to pressure overload between the diseased right and left ventricle in the rat","authors":"Ling Li, Bernd Niemann, Fabienne Knapp, Sebastian Werner, Christian Mühlfeld, Jan Philipp Schneider, Liane M. Jurida, Nicole Molenda, M. Lienhard Schmitz, Xiaoke Yin, Manuel Mayr, Rainer Schulz, Michael Kracht, Susanne Rohrbach","doi":"10.1007/s00395-024-01051-3","DOIUrl":null,"url":null,"abstract":"<p>The right ventricle (RV) differs developmentally, anatomically and functionally from the left ventricle (LV). Therefore, characteristics of LV adaptation to chronic pressure overload cannot easily be extrapolated to the RV. Mitochondrial abnormalities are considered a crucial contributor in heart failure (HF), but have never been compared directly between RV and LV tissues and cardiomyocytes. To identify ventricle-specific mitochondrial molecular and functional signatures, we established rat models with two slowly developing disease stages (compensated and decompensated) in response to pulmonary artery banding (PAB) or ascending aortic banding (AOB). Genome-wide transcriptomic and proteomic analyses were used to identify differentially expressed mitochondrial genes and proteins and were accompanied by a detailed characterization of mitochondrial function and morphology. Two clearly distinguishable disease stages, which culminated in a comparable systolic impairment of the respective ventricle, were observed. Mitochondrial respiration was similarly impaired at the decompensated stage, while respiratory chain activity or mitochondrial biogenesis were more severely deteriorated in the failing LV. Bioinformatics analyses of the RNA-seq. and proteomic data sets identified specifically deregulated mitochondrial components and pathways. Although the top regulated mitochondrial genes and proteins differed between the RV and LV, the overall changes in tissue and cardiomyocyte gene expression were highly similar. In conclusion, mitochondrial dysfuntion contributes to disease progression in right and left heart failure. Ventricle-specific differences in mitochondrial gene and protein expression are mostly related to the extent of observed changes, suggesting that despite developmental, anatomical and functional differences mitochondrial adaptations to chronic pressure overload are comparable in both ventricles.</p>","PeriodicalId":8723,"journal":{"name":"Basic Research in Cardiology","volume":null,"pages":null},"PeriodicalIF":7.5000,"publicationDate":"2024-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Basic Research in Cardiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s00395-024-01051-3","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CARDIAC & CARDIOVASCULAR SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

The right ventricle (RV) differs developmentally, anatomically and functionally from the left ventricle (LV). Therefore, characteristics of LV adaptation to chronic pressure overload cannot easily be extrapolated to the RV. Mitochondrial abnormalities are considered a crucial contributor in heart failure (HF), but have never been compared directly between RV and LV tissues and cardiomyocytes. To identify ventricle-specific mitochondrial molecular and functional signatures, we established rat models with two slowly developing disease stages (compensated and decompensated) in response to pulmonary artery banding (PAB) or ascending aortic banding (AOB). Genome-wide transcriptomic and proteomic analyses were used to identify differentially expressed mitochondrial genes and proteins and were accompanied by a detailed characterization of mitochondrial function and morphology. Two clearly distinguishable disease stages, which culminated in a comparable systolic impairment of the respective ventricle, were observed. Mitochondrial respiration was similarly impaired at the decompensated stage, while respiratory chain activity or mitochondrial biogenesis were more severely deteriorated in the failing LV. Bioinformatics analyses of the RNA-seq. and proteomic data sets identified specifically deregulated mitochondrial components and pathways. Although the top regulated mitochondrial genes and proteins differed between the RV and LV, the overall changes in tissue and cardiomyocyte gene expression were highly similar. In conclusion, mitochondrial dysfuntion contributes to disease progression in right and left heart failure. Ventricle-specific differences in mitochondrial gene and protein expression are mostly related to the extent of observed changes, suggesting that despite developmental, anatomical and functional differences mitochondrial adaptations to chronic pressure overload are comparable in both ventricles.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
比较患病大鼠右心室和左心室线粒体对压力超负荷反应的阶段性变化
右心室(RV)在发育、解剖和功能上都不同于左心室(LV)。因此,左心室对慢性压力过载的适应特征不能轻易推断到右心室。线粒体异常被认为是导致心力衰竭(HF)的一个关键因素,但从未在 RV 和 LV 组织及心肌细胞之间进行过直接比较。为了确定心室特异性线粒体分子和功能特征,我们建立了两个缓慢发展的疾病阶段(代偿期和失代偿期)大鼠模型,以应对肺动脉束带(PAB)或升主动脉束带(AOB)。全基因组转录组和蛋白质组分析用于鉴定线粒体基因和蛋白质的不同表达,并对线粒体功能和形态进行了详细描述。研究人员观察到两种明显不同的疾病分期,最终导致相应心室收缩功能受损。在失代偿阶段,线粒体呼吸同样受到损害,而在衰竭左心室中,呼吸链活性或线粒体生物生成的恶化更为严重。对RNA-seq和蛋白质组数据集进行的生物信息学分析确定了线粒体成分和通路的特定失调。虽然 RV 和 LV 受调控最多的线粒体基因和蛋白质有所不同,但组织和心肌细胞基因表达的总体变化却非常相似。总之,线粒体功能障碍是左右心衰疾病进展的原因之一。线粒体基因和蛋白表达的心室特异性差异主要与观察到的变化程度有关,这表明尽管在发育、解剖和功能上存在差异,但线粒体对慢性压力过载的适应性在两个心室中具有可比性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Basic Research in Cardiology
Basic Research in Cardiology 医学-心血管系统
CiteScore
16.30
自引率
5.30%
发文量
54
审稿时长
6-12 weeks
期刊介绍: Basic Research in Cardiology is an international journal for cardiovascular research. It provides a forum for original and review articles related to experimental cardiology that meet its stringent scientific standards. Basic Research in Cardiology regularly receives articles from the fields of - Molecular and Cellular Biology - Biochemistry - Biophysics - Pharmacology - Physiology and Pathology - Clinical Cardiology
期刊最新文献
Cardioprotection strategies for anthracycline cardiotoxicity. Immuno-related cardio-vascular adverse events associated with immuno-oncological treatments: an under-estimated threat for cancer patients. Cardioprotection of voluntary exercise against breast cancer-induced cardiac injury via STAT3. β3-Adrenergic receptor overexpression in cardiomyocytes preconditions mitochondria to withstand ischemia-reperfusion injury. Proprioceptors of the human pericardium.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1