首页 > 最新文献

Basic Research in Cardiology最新文献

英文 中文
Immuno-related cardio-vascular adverse events associated with immuno-oncological treatments: an under-estimated threat for cancer patients. 与免疫肿瘤治疗相关的免疫心血管不良事件:癌症患者面临的一个被低估的威胁。
IF 7.5 1区 医学 Q1 CARDIAC & CARDIOVASCULAR SYSTEMS Pub Date : 2024-09-03 DOI: 10.1007/s00395-024-01077-7
Giuseppe Panuccio, Pierpaolo Correale, Maria d'Apolito, Luciano Mutti, Rocco Giannicola, Luigi Pirtoli, Antonio Giordano, Demetrio Labate, Sebastiano Macheda, Nicole Carabetta, Youssef S Abdelwahed, Ulf Landmesser, Pierfrancesco Tassone, Pierosandro Tagliaferri, Salvatore De Rosa, Daniele Torella

Immunotherapy represents an emergent and heterogeneous group of anticancer treatments harnessing the human immune-surveillance system, including immune-checkpoint inhibitor monoclonal antibodies (mAbs), Chimeric Antigen Receptor T Cells (CAR-T) therapy, cancer vaccines and lymphocyte activation gene-3 (LAG-3) therapy. While remarkably effective against several malignancies, these therapies, often in combination with other cancer treatments, have showed unforeseen toxicity, including cardiovascular complications. The occurrence of immuno-mediated adverse (irAEs) events has been progressively reported in the last 10 years. These irAEs present an extended range of severity, from self-limiting to life-threatening conditions. Although recent guidelines in CardioOncology have provided important evidence in managing cancer treatments, they often encompass general approaches. However, a specific focus is required due to the particular etiology, unique risk factors, and associated side effects of immunotherapy. This review aims to deepen the understanding of the prevalence and nature of cardiovascular issues in patients undergoing immunotherapy, offering insights into strategies for risk stratification and management.

免疫疗法是利用人体免疫监视系统进行抗癌治疗的新兴异类疗法,包括免疫检查点抑制剂单克隆抗体(mAbs)、嵌合抗原受体 T 细胞(CAR-T)疗法、癌症疫苗和淋巴细胞活化基因-3(LAG-3)疗法。虽然这些疗法对多种恶性肿瘤有显著疗效,但往往与其他癌症疗法联合使用,会产生不可预见的毒性,包括心血管并发症。在过去 10 年中,免疫介导不良反应(irAEs)的发生率不断上升。免疫介导不良反应的严重程度范围很广,从自限性的到危及生命的都有。尽管最近的心脏病肿瘤学指南为管理癌症治疗提供了重要依据,但这些指南往往包含一般性方法。然而,由于免疫疗法的特殊病因、独特风险因素和相关副作用,需要特别关注。本综述旨在加深对接受免疫疗法的患者心血管问题的普遍性和性质的了解,为风险分层和管理策略提供真知灼见。
{"title":"Immuno-related cardio-vascular adverse events associated with immuno-oncological treatments: an under-estimated threat for cancer patients.","authors":"Giuseppe Panuccio, Pierpaolo Correale, Maria d'Apolito, Luciano Mutti, Rocco Giannicola, Luigi Pirtoli, Antonio Giordano, Demetrio Labate, Sebastiano Macheda, Nicole Carabetta, Youssef S Abdelwahed, Ulf Landmesser, Pierfrancesco Tassone, Pierosandro Tagliaferri, Salvatore De Rosa, Daniele Torella","doi":"10.1007/s00395-024-01077-7","DOIUrl":"10.1007/s00395-024-01077-7","url":null,"abstract":"<p><p>Immunotherapy represents an emergent and heterogeneous group of anticancer treatments harnessing the human immune-surveillance system, including immune-checkpoint inhibitor monoclonal antibodies (mAbs), Chimeric Antigen Receptor T Cells (CAR-T) therapy, cancer vaccines and lymphocyte activation gene-3 (LAG-3) therapy. While remarkably effective against several malignancies, these therapies, often in combination with other cancer treatments, have showed unforeseen toxicity, including cardiovascular complications. The occurrence of immuno-mediated adverse (irAEs) events has been progressively reported in the last 10 years. These irAEs present an extended range of severity, from self-limiting to life-threatening conditions. Although recent guidelines in CardioOncology have provided important evidence in managing cancer treatments, they often encompass general approaches. However, a specific focus is required due to the particular etiology, unique risk factors, and associated side effects of immunotherapy. This review aims to deepen the understanding of the prevalence and nature of cardiovascular issues in patients undergoing immunotherapy, offering insights into strategies for risk stratification and management.</p>","PeriodicalId":8723,"journal":{"name":"Basic Research in Cardiology","volume":null,"pages":null},"PeriodicalIF":7.5,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142118893","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cardioprotection of voluntary exercise against breast cancer-induced cardiac injury via STAT3. 自愿运动通过 STAT3 对乳腺癌诱发的心脏损伤起到保护作用
IF 7.5 1区 医学 Q1 CARDIAC & CARDIOVASCULAR SYSTEMS Pub Date : 2024-08-19 DOI: 10.1007/s00395-024-01076-8
Lan Wu, Zhi-Zheng Li, Hao Yang, Li-Zhi Cao, Xiao-Ying Wang, Dong-Liang Wang, Emeli Chatterjee, Yan-Fei Li, Gang Huang

Exercise is an effective way to alleviate breast cancer-induced cardiac injury to a certain extent. However, whether voluntary exercise (VE) activates cardiac signal transducer and activator of transcription 3 (STAT3) and the underlying mechanisms remain unclear. This study investigated the role of STAT3-microRNA(miRNA)-targeted protein axis in VE against breast cancer-induced cardiac injury.VE for 4 weeks not only improved cardiac function of transgenic breast cancer female mice [mouse mammary tumor virus-polyomavirus middle T antigen (MMTV-PyMT +)] compared with littermate mice with no cancer (MMTV-PyMT -), but also increased myocardial STAT3 tyrosine 705 phosphorylation. Significantly more obvious cardiac fibrosis, smaller cardiomyocyte size, lower cell viability, and higher serum tumor necrosis factor (TNF)-α were shown in MMTV-PyMT + mice compared with MMTV-PyMT - mice, which were ameliorated by VE. However, VE did not influence the tumor growth. MiRNA sequencing identified that miR-181a-5p was upregulated and miR-130b-3p was downregulated in VE induced-cardioprotection. Myocardial injection of Adeno-associated virus serotype 9 driving STAT3 tyrosine 705 mutations abolished cardioprotective effects above. Myocardial STAT3 was identified as the transcription factor binding the promoters of pri-miR-181a (the precursor of miR-181a-5p) and HOX transcript antisense RNA (HOTAIR, sponged miR-130b-3p) in isolated cardiomyocytes. Furthermore, miR-181a-5p targeting PTEN and miR-130b-3p targeting Zinc finger and BTB domain containing protein 20 (Zbtb20) were proved in AC-16 cells. These findings indicated that VE protects against breast cancer-induced cardiac injury via activating STAT3 to promote miR-181a-5p targeting PTEN and to promote HOTAIR to sponge miR-130b-3p targeting Zbtb20, helping to develop new targets in exercise therapy for breast cancer-induced cardiac injury.

运动是在一定程度上缓解乳腺癌诱发的心脏损伤的有效方法。然而,自主运动(VE)是否能激活心脏信号转导子和转录激活子3(STAT3)及其内在机制仍不清楚。本研究探讨了STAT3-microRNA(miRNA)-靶向蛋白轴在VE对抗乳腺癌诱导的心脏损伤中的作用。与未患乳腺癌的同窝小鼠(MMTV-PyMT -)相比,持续4周的VE不仅能改善转基因乳腺癌雌性小鼠[小鼠乳腺肿瘤病毒-多瘤病毒中间T抗原(MMTV-PyMT +)]的心脏功能,还能增加心肌STAT3酪氨酸705磷酸化。与 MMTV-PyMT - 小鼠相比,MMTV-PyMT + 小鼠的心肌纤维化更明显,心肌细胞体积更小,细胞存活率更低,血清肿瘤坏死因子(TNF)-α更高。然而,VE并不影响肿瘤的生长。MiRNA 测序发现,在 VE 诱导的心肌保护中,miR-181a-5p 上调,miR-130b-3p 下调。心肌注射驱动STAT3酪氨酸705突变的9号血清型腺相关病毒后,上述心脏保护作用消失。在离体心肌细胞中,心肌 STAT3 被确定为结合 pri-miR-181a(miR-181a-5p 的前体)和 HOX 转录本反义 RNA(HOTAIR,海绵状 miR-130b-3p)启动子的转录因子。此外,在 AC-16 细胞中还证实了靶向 PTEN 的 miR-181a-5p 和靶向锌指和含 BTB 结构域蛋白 20(Zbtb20)的 miR-130b-3p。这些研究结果表明,VE通过激活STAT3促进靶向PTEN的miR-181a-5p和促进HOTAIR海绵化靶向Zbtb20的miR-130b-3p来保护乳腺癌诱导的心脏损伤,有助于开发运动疗法治疗乳腺癌诱导的心脏损伤的新靶点。
{"title":"Cardioprotection of voluntary exercise against breast cancer-induced cardiac injury via STAT3.","authors":"Lan Wu, Zhi-Zheng Li, Hao Yang, Li-Zhi Cao, Xiao-Ying Wang, Dong-Liang Wang, Emeli Chatterjee, Yan-Fei Li, Gang Huang","doi":"10.1007/s00395-024-01076-8","DOIUrl":"https://doi.org/10.1007/s00395-024-01076-8","url":null,"abstract":"<p><p>Exercise is an effective way to alleviate breast cancer-induced cardiac injury to a certain extent. However, whether voluntary exercise (VE) activates cardiac signal transducer and activator of transcription 3 (STAT3) and the underlying mechanisms remain unclear. This study investigated the role of STAT3-microRNA(miRNA)-targeted protein axis in VE against breast cancer-induced cardiac injury.VE for 4 weeks not only improved cardiac function of transgenic breast cancer female mice [mouse mammary tumor virus-polyomavirus middle T antigen (MMTV-PyMT +)] compared with littermate mice with no cancer (MMTV-PyMT -), but also increased myocardial STAT3 tyrosine 705 phosphorylation. Significantly more obvious cardiac fibrosis, smaller cardiomyocyte size, lower cell viability, and higher serum tumor necrosis factor (TNF)-α were shown in MMTV-PyMT + mice compared with MMTV-PyMT - mice, which were ameliorated by VE. However, VE did not influence the tumor growth. MiRNA sequencing identified that miR-181a-5p was upregulated and miR-130b-3p was downregulated in VE induced-cardioprotection. Myocardial injection of Adeno-associated virus serotype 9 driving STAT3 tyrosine 705 mutations abolished cardioprotective effects above. Myocardial STAT3 was identified as the transcription factor binding the promoters of pri-miR-181a (the precursor of miR-181a-5p) and HOX transcript antisense RNA (HOTAIR, sponged miR-130b-3p) in isolated cardiomyocytes. Furthermore, miR-181a-5p targeting PTEN and miR-130b-3p targeting Zinc finger and BTB domain containing protein 20 (Zbtb20) were proved in AC-16 cells. These findings indicated that VE protects against breast cancer-induced cardiac injury via activating STAT3 to promote miR-181a-5p targeting PTEN and to promote HOTAIR to sponge miR-130b-3p targeting Zbtb20, helping to develop new targets in exercise therapy for breast cancer-induced cardiac injury.</p>","PeriodicalId":8723,"journal":{"name":"Basic Research in Cardiology","volume":null,"pages":null},"PeriodicalIF":7.5,"publicationDate":"2024-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141999391","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
β3-Adrenergic receptor overexpression in cardiomyocytes preconditions mitochondria to withstand ischemia-reperfusion injury. β3-肾上腺素能受体在心肌细胞中的过表达为线粒体承受缺血再灌注损伤提供了先决条件。
IF 7.5 1区 医学 Q1 CARDIAC & CARDIOVASCULAR SYSTEMS Pub Date : 2024-08-12 DOI: 10.1007/s00395-024-01072-y
Miguel Fernández-Tocino, Andrés Pun-Garcia, Mónica Gómez, Agustín Clemente-Moragón, Eduardo Oliver, Rocío Villena-Gutierrez, Sofía Trigo-Anca, Anabel Díaz-Guerra, David Sanz-Rosa, Belén Prados, Lara Del Campo, Vicente Andrés, Valentín Fuster, José Luis de la Pompa, Laura Cádiz, Borja Ibañez

β3-Adrenergic receptor (β3AR) agonists have been shown to protect against ischemia-reperfusion injury (IRI). Since β3ARs are present both in cardiomyocytes and in endothelial cells, the cellular compartment responsible for this protection has remained unknown. Using transgenic mice constitutively expressing the human β3AR (hβ3AR) in cardiomyocytes or in the endothelium on a genetic background of null endogenous β3AR expression, we show that only cardiomyocyte expression protects against IRI (45 min ischemia followed by reperfusion over 24 h). Infarct size was also limited after ischemia-reperfusion in mice with cardiomyocyte hβ3AR overexpression on top of endogenous β3AR expression. hβ3AR overexpression in these mice reduced IRI-induced cardiac fibrosis and improved long-term left ventricular systolic function. Cardiomyocyte-specific β3AR overexpression resulted in a baseline remodeling of the mitochondrial network, characterized by upregulated mitochondrial biogenesis and a downregulation of mitochondrial quality control (mitophagy), resulting in elevated numbers of small mitochondria with a depressed capacity for the generation of reactive oxygen species but improved capacity for ATP generation. These processes precondition cardiomyocyte mitochondria to be more resistant to IRI. Upon reperfusion, hearts with hβ3AR overexpression display a restoration in the mitochondrial quality control and a rapid activation of antioxidant responses. Strong protection against IRI was also observed in mice infected with an adeno-associated virus (AAV) encoding hβ3AR under a cardiomyocyte-specific promoter. These results confirm the translational potential of increased cardiomyocyte β3AR expression, achieved either naturally through exercise or artificially through gene therapy approaches, to precondition the cardiomyocyte mitochondrial network to withstand future insults.

β3-肾上腺素能受体(β3AR)激动剂对缺血再灌注损伤(IRI)有保护作用。由于β3AR既存在于心肌细胞中,也存在于内皮细胞中,因此这种保护作用是由哪个细胞区段产生的一直不得而知。我们利用在心肌细胞或内皮细胞中组成性表达人 β3AR(hβ3AR)的转基因小鼠,在内源性 β3AR无效表达的遗传背景下研究发现,只有心肌细胞表达的β3AR才对 IRI(缺血 45 分钟,然后再灌注 24 小时)有保护作用。在内源性 β3AR 表达的基础上,心肌细胞过表达 hβ3AR 的小鼠在缺血再灌注后梗死面积也受到了限制。心肌细胞特异性β3AR过表达导致线粒体网络的基线重塑,其特点是线粒体生物生成上调,线粒体质量控制(丝裂噬)下调,导致小线粒体数量增加,活性氧生成能力下降,但 ATP 生成能力提高。这些过程为心肌细胞线粒体提供了先决条件,使其更能抵抗 IRI。再灌注时,过表达 hβ3AR 的心脏线粒体质量控制得到恢复,抗氧化反应迅速激活。用心肌细胞特异性启动子编码 hβ3AR 的腺相关病毒(AAV)感染小鼠后,也观察到了对 IRI 的强大保护作用。这些结果证实了增加心肌细胞β3AR表达的转化潜力,无论是通过运动自然实现,还是通过基因治疗方法人工实现,都能为心肌细胞线粒体网络预设条件,以抵御未来的损伤。
{"title":"β3-Adrenergic receptor overexpression in cardiomyocytes preconditions mitochondria to withstand ischemia-reperfusion injury.","authors":"Miguel Fernández-Tocino, Andrés Pun-Garcia, Mónica Gómez, Agustín Clemente-Moragón, Eduardo Oliver, Rocío Villena-Gutierrez, Sofía Trigo-Anca, Anabel Díaz-Guerra, David Sanz-Rosa, Belén Prados, Lara Del Campo, Vicente Andrés, Valentín Fuster, José Luis de la Pompa, Laura Cádiz, Borja Ibañez","doi":"10.1007/s00395-024-01072-y","DOIUrl":"https://doi.org/10.1007/s00395-024-01072-y","url":null,"abstract":"<p><p>β3-Adrenergic receptor (β3AR) agonists have been shown to protect against ischemia-reperfusion injury (IRI). Since β3ARs are present both in cardiomyocytes and in endothelial cells, the cellular compartment responsible for this protection has remained unknown. Using transgenic mice constitutively expressing the human β3AR (hβ3AR) in cardiomyocytes or in the endothelium on a genetic background of null endogenous β3AR expression, we show that only cardiomyocyte expression protects against IRI (45 min ischemia followed by reperfusion over 24 h). Infarct size was also limited after ischemia-reperfusion in mice with cardiomyocyte hβ3AR overexpression on top of endogenous β3AR expression. hβ3AR overexpression in these mice reduced IRI-induced cardiac fibrosis and improved long-term left ventricular systolic function. Cardiomyocyte-specific β3AR overexpression resulted in a baseline remodeling of the mitochondrial network, characterized by upregulated mitochondrial biogenesis and a downregulation of mitochondrial quality control (mitophagy), resulting in elevated numbers of small mitochondria with a depressed capacity for the generation of reactive oxygen species but improved capacity for ATP generation. These processes precondition cardiomyocyte mitochondria to be more resistant to IRI. Upon reperfusion, hearts with hβ3AR overexpression display a restoration in the mitochondrial quality control and a rapid activation of antioxidant responses. Strong protection against IRI was also observed in mice infected with an adeno-associated virus (AAV) encoding hβ3AR under a cardiomyocyte-specific promoter. These results confirm the translational potential of increased cardiomyocyte β3AR expression, achieved either naturally through exercise or artificially through gene therapy approaches, to precondition the cardiomyocyte mitochondrial network to withstand future insults.</p>","PeriodicalId":8723,"journal":{"name":"Basic Research in Cardiology","volume":null,"pages":null},"PeriodicalIF":7.5,"publicationDate":"2024-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141970536","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Proprioceptors of the human pericardium. 人体心包的直觉感受器
IF 7.5 1区 医学 Q1 CARDIAC & CARDIOVASCULAR SYSTEMS Pub Date : 2024-08-09 DOI: 10.1007/s00395-024-01075-9
Lea M Piermaier, Svenja Caspers, Christina Herold, Michael Wolf-Vollenbröker, Patrick Brzoska, Eric Bechler, Timm J Filler

In the human organism, all functions are regulated and, therefore, require a feedback mechanism. This control involves a perception of the spatial tensile state of cardiac tissues. The presence and distribution of respective proprioceptive corpuscles have not been considered so far. Therefore, a comprehensive study of the entire human fibrous pericardium was conducted to describe the presence of proprioceptors, their density, and distribution patterns. Eight human pericardial specimens gained from our body donation program were used to create a three-dimensional map of proprioceptors in the pericardium based on their histological and immunohistochemical identification. The 3D map was generated as a volume-rendered 3D model based on magnetic resonance imaging of the pericardium, to which all identified receptors were mapped. To discover a systematic pattern in receptor distribution, statistical cluster analysis was conducted using the Scikit-learn library in Python. Ruffini-like corpuscles (RLCs) were found in all pericardia and assigned to three histological receptor localizations depending on the fibrous pericardium's layering, with no other corpuscular proprioceptors identified. Cluster analysis revealed that RLCs exhibit a specific topographical arrangement. The highest receptor concentrations occur at the ventricular bulges, where their size reaches its maximum in terms of diameter, and at the perivascular pericardial turn-up. The findings suggest that the pericardium is subject to proprioceptive control. RLCs record lateral shearing between the pericardial sublayers, and their distribution pattern enables the detection of distinct dilatation of the heart. Therefore, the pericardium might have an undiscovered function as a sensor with the RLCs as its anatomical correlate.

在人类机体中,所有功能都受到调节,因此需要一种反馈机制。这种控制涉及对心脏组织空间张力状态的感知。迄今为止,还没有人考虑过各自本体感受体的存在和分布。因此,我们对整个人体纤维心包进行了全面研究,以描述本体感受器的存在、密度和分布模式。根据组织学和免疫组化鉴定,我们利用从遗体捐献计划中获得的八份人体心包标本绘制了心包中本体感受器的三维图。三维图是根据心包的磁共振成像生成的体积渲染三维模型,所有已鉴定的受体都被映射到该模型上。为了发现受体分布的系统模式,使用 Python 中的 Scikit-learn 库进行了统计聚类分析。在所有心包中都发现了拉菲尼样球体(RLC),并根据纤维心包的分层将其归入三种组织学受体定位,没有发现其他球体本体感受器。聚类分析显示,RLCs 呈现出特定的地形排列。受体浓度最高的部位是心室隆起处(其直径达到最大值)和血管周围心包翻起处。研究结果表明,心包受本体感觉控制。RLC 可记录心包亚层之间的横向剪切,其分布模式可检测到心脏的明显扩张。因此,心包可能具有尚未被发现的传感器功能,RLCs 是其解剖学上的相关器官。
{"title":"Proprioceptors of the human pericardium.","authors":"Lea M Piermaier, Svenja Caspers, Christina Herold, Michael Wolf-Vollenbröker, Patrick Brzoska, Eric Bechler, Timm J Filler","doi":"10.1007/s00395-024-01075-9","DOIUrl":"https://doi.org/10.1007/s00395-024-01075-9","url":null,"abstract":"<p><p>In the human organism, all functions are regulated and, therefore, require a feedback mechanism. This control involves a perception of the spatial tensile state of cardiac tissues. The presence and distribution of respective proprioceptive corpuscles have not been considered so far. Therefore, a comprehensive study of the entire human fibrous pericardium was conducted to describe the presence of proprioceptors, their density, and distribution patterns. Eight human pericardial specimens gained from our body donation program were used to create a three-dimensional map of proprioceptors in the pericardium based on their histological and immunohistochemical identification. The 3D map was generated as a volume-rendered 3D model based on magnetic resonance imaging of the pericardium, to which all identified receptors were mapped. To discover a systematic pattern in receptor distribution, statistical cluster analysis was conducted using the Scikit-learn library in Python. Ruffini-like corpuscles (RLCs) were found in all pericardia and assigned to three histological receptor localizations depending on the fibrous pericardium's layering, with no other corpuscular proprioceptors identified. Cluster analysis revealed that RLCs exhibit a specific topographical arrangement. The highest receptor concentrations occur at the ventricular bulges, where their size reaches its maximum in terms of diameter, and at the perivascular pericardial turn-up. The findings suggest that the pericardium is subject to proprioceptive control. RLCs record lateral shearing between the pericardial sublayers, and their distribution pattern enables the detection of distinct dilatation of the heart. Therefore, the pericardium might have an undiscovered function as a sensor with the RLCs as its anatomical correlate.</p>","PeriodicalId":8723,"journal":{"name":"Basic Research in Cardiology","volume":null,"pages":null},"PeriodicalIF":7.5,"publicationDate":"2024-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141905784","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Deficiency of the sphingosine-1-phosphate (S1P) transporter Mfsd2b protects the heart against hypertension-induced cardiac remodeling by suppressing the L-type-Ca2+ channel. 缺乏鞘氨醇-1-磷酸(S1P)转运体 Mfsd2b 可通过抑制 L-type-Ca2+ 通道保护心脏免受高血压引起的心脏重塑的影响。
IF 7.5 1区 医学 Q1 CARDIAC & CARDIOVASCULAR SYSTEMS Pub Date : 2024-08-07 DOI: 10.1007/s00395-024-01073-x
Dragos Andrei Duse, Nathalie Hannelore Schröder, Tanu Srivastava, Marcel Benkhoff, Jens Vogt, Melissa Kim Nowak, Florian Funk, Nina Semleit, Philipp Wollnitzke, Ralf Erkens, Sebastian Kötter, Sven Günther Meuth, Petra Keul, Webster Santos, Amin Polzin, Malte Kelm, Martina Krüger, Joachim Schmitt, Bodo Levkau

The erythrocyte S1P transporter Mfsd2b is also expressed in the heart. We hypothesized that S1P transport by Mfsd2b is involved in cardiac function. Hypertension-induced cardiac remodeling was induced by 4-weeks Angiotensin II (AngII) administration and assessed by echocardiography. Ca2+ transients and sarcomere shortening were examined in adult cardiomyocytes (ACM) from Mfsd2b+/+ and Mfsd2b-/- mice. Tension and force development were measured in skinned cardiac fibers. Myocardial gene expression was determined by real-time PCR, Protein Phosphatase 2A (PP2A) by enzymatic assay, and S1P by LC/MS, respectively. Msfd2b was expressed in the murine and human heart, and its deficiency led to higher cardiac S1P. Mfsd2b-/- mice had regular basal cardiac function but were protected against AngII-induced deterioration of left-ventricular function as evidenced by ~ 30% better stroke volume and cardiac index, and preserved ejection fraction despite similar increases in blood pressure. Mfsd2b-/- ACM exhibited attenuated Ca2+ mobilization in response to isoprenaline whereas contractility was unchanged. Mfsd2b-/- ACM showed no changes in proteins responsible for Ca2+ homeostasis, and skinned cardiac fibers exhibited reduced passive tension generation with preserved contractility. Verapamil abolished the differences in Ca2+ mobilization between Mfsd2b+/+ and Mfsd2b-/- ACM suggesting that S1P inhibits L-type-Ca2+ channels (LTCC). In agreement, intracellular S1P activated the inhibitory LTCC phosphatase PP2A in ACM and PP2A activity was increased in Mfsd2b-/- hearts. We suggest that myocardial S1P protects from hypertension-induced left-ventricular remodeling by inhibiting LTCC through PP2A activation. Pharmacologic inhibition of Mfsd2b may thus offer a novel approach to heart failure.

红细胞 S1P 转运体 Mfsd2b 也在心脏中表达。我们假设 Mfsd2b 转运的 S1P 参与了心脏功能。高血压诱导的心脏重塑是通过4周的血管紧张素II(AngII)给药诱导的,并通过超声心动图进行评估。在来自 Mfsd2b+/+ 和 Mfsd2b-/- 小鼠的成体心肌细胞(ACM)中检测了 Ca2+ 瞬时和肌节缩短。对带皮心肌纤维的张力和肌力发展进行了测量。心肌基因表达分别通过实时 PCR 法、蛋白磷酸酶 2A (PP2A) 酶法和 S1P LC/MS 法进行测定。Msfd2b在小鼠和人类心脏中均有表达,其缺乏会导致心脏S1P升高。Mfsd2b-/-小鼠的基础心脏功能正常,但对AngII诱导的左心室功能恶化有保护作用,表现为尽管血压升高相似,但每搏量和心脏指数提高约30%,射血分数保持不变。Mfsd2b-/- ACM 对异丙肾上腺素的 Ca2+ 迁移反应减弱,而收缩力保持不变。Mfsd2b-/- ACM中负责Ca2+平衡的蛋白质没有变化,带皮心肌纤维表现出被动张力生成减少,但收缩力保持不变。维拉帕米消除了 Mfsd2b+/+ 和 Mfsd2b-/- ACM 之间 Ca2+ 迁移的差异,这表明 S1P 可抑制 L 型-Ca2+ 通道(LTCC)。同样,细胞内 S1P 激活了 ACM 中抑制 LTCC 的磷酸酶 PP2A,而在 Mfsd2b-/- 心脏中 PP2A 活性增加。我们认为,心肌 S1P 可通过 PP2A 激活抑制 LTCC,从而防止高血压引起的左心室重构。因此,药物抑制 Mfsd2b 可能是治疗心力衰竭的一种新方法。
{"title":"Deficiency of the sphingosine-1-phosphate (S1P) transporter Mfsd2b protects the heart against hypertension-induced cardiac remodeling by suppressing the L-type-Ca<sup>2+</sup> channel.","authors":"Dragos Andrei Duse, Nathalie Hannelore Schröder, Tanu Srivastava, Marcel Benkhoff, Jens Vogt, Melissa Kim Nowak, Florian Funk, Nina Semleit, Philipp Wollnitzke, Ralf Erkens, Sebastian Kötter, Sven Günther Meuth, Petra Keul, Webster Santos, Amin Polzin, Malte Kelm, Martina Krüger, Joachim Schmitt, Bodo Levkau","doi":"10.1007/s00395-024-01073-x","DOIUrl":"https://doi.org/10.1007/s00395-024-01073-x","url":null,"abstract":"<p><p>The erythrocyte S1P transporter Mfsd2b is also expressed in the heart. We hypothesized that S1P transport by Mfsd2b is involved in cardiac function. Hypertension-induced cardiac remodeling was induced by 4-weeks Angiotensin II (AngII) administration and assessed by echocardiography. Ca<sup>2+</sup> transients and sarcomere shortening were examined in adult cardiomyocytes (ACM) from Mfsd2b<sup>+/+</sup> and Mfsd2b<sup>-/-</sup> mice. Tension and force development were measured in skinned cardiac fibers. Myocardial gene expression was determined by real-time PCR, Protein Phosphatase 2A (PP2A) by enzymatic assay, and S1P by LC/MS, respectively. Msfd2b was expressed in the murine and human heart, and its deficiency led to higher cardiac S1P. Mfsd2b<sup>-/-</sup> mice had regular basal cardiac function but were protected against AngII-induced deterioration of left-ventricular function as evidenced by ~ 30% better stroke volume and cardiac index, and preserved ejection fraction despite similar increases in blood pressure. Mfsd2b<sup>-/-</sup> ACM exhibited attenuated Ca<sup>2+</sup> mobilization in response to isoprenaline whereas contractility was unchanged. Mfsd2b<sup>-/-</sup> ACM showed no changes in proteins responsible for Ca<sup>2+</sup> homeostasis, and skinned cardiac fibers exhibited reduced passive tension generation with preserved contractility. Verapamil abolished the differences in Ca<sup>2+</sup> mobilization between Mfsd2b<sup>+/+</sup> and Mfsd2b<sup>-/-</sup> ACM suggesting that S1P inhibits L-type-Ca<sup>2+</sup> channels (LTCC). In agreement, intracellular S1P activated the inhibitory LTCC phosphatase PP2A in ACM and PP2A activity was increased in Mfsd2b<sup>-/-</sup> hearts. We suggest that myocardial S1P protects from hypertension-induced left-ventricular remodeling by inhibiting LTCC through PP2A activation. Pharmacologic inhibition of Mfsd2b may thus offer a novel approach to heart failure.</p>","PeriodicalId":8723,"journal":{"name":"Basic Research in Cardiology","volume":null,"pages":null},"PeriodicalIF":7.5,"publicationDate":"2024-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141896648","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Gasotransmitters and noble gases in cardioprotection: unraveling molecular pathways for future therapeutic strategies. 气体递质和惰性气体在心脏保护中的作用:揭示未来治疗策略的分子途径。
IF 7.5 1区 医学 Q1 CARDIAC & CARDIOVASCULAR SYSTEMS Pub Date : 2024-08-01 Epub Date: 2024-06-15 DOI: 10.1007/s00395-024-01061-1
Pasquale Pagliaro, Nina C Weber, Saveria Femminò, Giuseppe Alloatti, Claudia Penna

Despite recent progress, ischemic heart disease poses a persistent global challenge, driving significant morbidity and mortality. The pursuit of therapeutic solutions has led to the emergence of strategies such as ischemic preconditioning, postconditioning, and remote conditioning to shield the heart from myocardial ischemia/reperfusion injury (MIRI). These ischemic conditioning approaches, applied before, after, or at a distance from the affected organ, inspire future therapeutic strategies, including pharmacological conditioning. Gasotransmitters, comprising nitric oxide, hydrogen sulfide, sulfur dioxide, and carbon monoxide, play pivotal roles in physiological and pathological processes, exhibiting shared features such as smooth muscle relaxation, antiapoptotic effects, and anti-inflammatory properties. Despite potential risks at high concentrations, physiological levels of gasotransmitters induce vasorelaxation and promote cardioprotective effects. Noble gases, notably argon, helium, and xenon, exhibit organ-protective properties by reducing cell death, minimizing infarct size, and enhancing functional recovery in post-ischemic organs. The protective role of noble gases appears to hinge on their modulation of molecular pathways governing cell survival, leading to both pro- and antiapoptotic effects. Among noble gases, helium and xenon emerge as particularly promising in the field of cardioprotection. This overview synthesizes our current understanding of the roles played by gasotransmitters and noble gases in the context of MIRI and cardioprotection. In addition, we underscore potential future developments involving the utilization of noble gases and gasotransmitter donor molecules in advancing cardioprotective strategies.

尽管近来取得了一些进展,但缺血性心脏病仍是一个持续存在的全球性挑战,导致了严重的发病率和死亡率。为了寻求治疗方案,出现了缺血预处理、后处理和远程调节等策略,以保护心脏免受心肌缺血/再灌注损伤(MIRI)。这些缺血调理方法可在受影响器官之前、之后或远离受影响器官的地方使用,为未来的治疗策略(包括药理调理)提供了灵感。气体递质包括一氧化氮、硫化氢、二氧化硫和一氧化碳,在生理和病理过程中发挥着关键作用,具有平滑肌松弛、抗凋亡作用和抗炎特性等共同特征。尽管高浓度气体存在潜在风险,但生理水平的气体递质可诱导血管舒张并促进心脏保护作用。惰性气体,尤其是氩气、氦气和氙气,通过减少细胞死亡、缩小梗塞面积和增强缺血后器官的功能恢复,表现出器官保护特性。惰性气体的保护作用似乎取决于它们对细胞存活分子途径的调节,从而产生促凋亡和抗凋亡作用。在惰性气体中,氦气和氙气在心脏保护领域尤其具有前景。本文综述了我们目前对气体递质和惰性气体在 MIRI 和心脏保护方面所起作用的理解。此外,我们还强调了利用惰性气体和气体递质供体分子推进心脏保护策略的未来发展潜力。
{"title":"Gasotransmitters and noble gases in cardioprotection: unraveling molecular pathways for future therapeutic strategies.","authors":"Pasquale Pagliaro, Nina C Weber, Saveria Femminò, Giuseppe Alloatti, Claudia Penna","doi":"10.1007/s00395-024-01061-1","DOIUrl":"10.1007/s00395-024-01061-1","url":null,"abstract":"<p><p>Despite recent progress, ischemic heart disease poses a persistent global challenge, driving significant morbidity and mortality. The pursuit of therapeutic solutions has led to the emergence of strategies such as ischemic preconditioning, postconditioning, and remote conditioning to shield the heart from myocardial ischemia/reperfusion injury (MIRI). These ischemic conditioning approaches, applied before, after, or at a distance from the affected organ, inspire future therapeutic strategies, including pharmacological conditioning. Gasotransmitters, comprising nitric oxide, hydrogen sulfide, sulfur dioxide, and carbon monoxide, play pivotal roles in physiological and pathological processes, exhibiting shared features such as smooth muscle relaxation, antiapoptotic effects, and anti-inflammatory properties. Despite potential risks at high concentrations, physiological levels of gasotransmitters induce vasorelaxation and promote cardioprotective effects. Noble gases, notably argon, helium, and xenon, exhibit organ-protective properties by reducing cell death, minimizing infarct size, and enhancing functional recovery in post-ischemic organs. The protective role of noble gases appears to hinge on their modulation of molecular pathways governing cell survival, leading to both pro- and antiapoptotic effects. Among noble gases, helium and xenon emerge as particularly promising in the field of cardioprotection. This overview synthesizes our current understanding of the roles played by gasotransmitters and noble gases in the context of MIRI and cardioprotection. In addition, we underscore potential future developments involving the utilization of noble gases and gasotransmitter donor molecules in advancing cardioprotective strategies.</p>","PeriodicalId":8723,"journal":{"name":"Basic Research in Cardiology","volume":null,"pages":null},"PeriodicalIF":7.5,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11319428/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141327191","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Exercise training decreases lactylation and prevents myocardial ischemia-reperfusion injury by inhibiting YTHDF2. 运动训练通过抑制 YTHDF2 减少泌乳,并预防心肌缺血再灌注损伤。
IF 7.5 1区 医学 Q1 CARDIAC & CARDIOVASCULAR SYSTEMS Pub Date : 2024-08-01 Epub Date: 2024-04-02 DOI: 10.1007/s00395-024-01044-2
Gui-E Xu, Pujiao Yu, Yuxue Hu, Wensi Wan, Keting Shen, Xinxin Cui, Jiaqi Wang, Tianhui Wang, Caiyue Cui, Emeli Chatterjee, Guoping Li, Dragos Cretoiu, Joost P G Sluijter, Jiahong Xu, Lijun Wang, Junjie Xiao

Exercise improves cardiac function and metabolism. Although long-term exercise leads to circulating and micro-environmental metabolic changes, the effect of exercise on protein post-translational lactylation modifications as well as its functional relevance is unclear. Here, we report that lactate can regulate cardiomyocyte changes by improving protein lactylation levels and elevating intracellular N6-methyladenosine RNA-binding protein YTHDF2. The intrinsic disorder region of YTHDF2 but not the RNA m6A-binding activity is indispensable for its regulatory function in influencing cardiomyocyte cell size changes and oxygen glucose deprivation/re-oxygenation (OGD/R)-stimulated apoptosis via upregulating Ras GTPase-activating protein-binding protein 1 (G3BP1). Downregulation of YTHDF2 is required for exercise-induced physiological cardiac hypertrophy. Moreover, myocardial YTHDF2 inhibition alleviated ischemia/reperfusion-induced acute injury and pathological remodeling. Our results here link lactate and lactylation modifications with RNA m6A reader YTHDF2 and highlight the physiological importance of this innovative post-transcriptional intrinsic regulation mechanism of cardiomyocyte responses to exercise. Decreasing lactylation or inhibiting YTHDF2/G3BP1 might represent a promising therapeutic strategy for cardiac diseases.

运动能改善心脏功能和新陈代谢。虽然长期运动会导致循环和微环境代谢发生变化,但运动对蛋白质翻译后乳化修饰的影响及其功能相关性尚不清楚。在此,我们报告了乳酸可通过改善蛋白质乳化水平和提高细胞内 N6-甲基腺苷 RNA 结合蛋白 YTHDF2 来调节心肌细胞的变化。在通过上调 Ras GTPase-activating protein-binding protein 1(G3BP1)影响心肌细胞大小变化和氧-葡萄糖剥夺/再氧合(OGD/R)刺激的细胞凋亡方面,YTHDF2 的固有紊乱区(而非 RNA m6A 结合活性)对其调控功能不可或缺。下调 YTHDF2 是运动诱导生理性心肌肥厚的必要条件。此外,抑制心肌YTHDF2可减轻缺血/再灌注引起的急性损伤和病理重塑。我们的研究结果将乳酸和乳化修饰与 RNA m6A 阅读器 YTHDF2 联系起来,并强调了这种创新的转录后内在调控机制对心肌细胞运动反应的生理重要性。降低乳酸化或抑制 YTHDF2/G3BP1 可能是治疗心脏疾病的一种有前景的策略。
{"title":"Exercise training decreases lactylation and prevents myocardial ischemia-reperfusion injury by inhibiting YTHDF2.","authors":"Gui-E Xu, Pujiao Yu, Yuxue Hu, Wensi Wan, Keting Shen, Xinxin Cui, Jiaqi Wang, Tianhui Wang, Caiyue Cui, Emeli Chatterjee, Guoping Li, Dragos Cretoiu, Joost P G Sluijter, Jiahong Xu, Lijun Wang, Junjie Xiao","doi":"10.1007/s00395-024-01044-2","DOIUrl":"10.1007/s00395-024-01044-2","url":null,"abstract":"<p><p>Exercise improves cardiac function and metabolism. Although long-term exercise leads to circulating and micro-environmental metabolic changes, the effect of exercise on protein post-translational lactylation modifications as well as its functional relevance is unclear. Here, we report that lactate can regulate cardiomyocyte changes by improving protein lactylation levels and elevating intracellular N<sup>6</sup>-methyladenosine RNA-binding protein YTHDF2. The intrinsic disorder region of YTHDF2 but not the RNA m<sup>6</sup>A-binding activity is indispensable for its regulatory function in influencing cardiomyocyte cell size changes and oxygen glucose deprivation/re-oxygenation (OGD/R)-stimulated apoptosis via upregulating Ras GTPase-activating protein-binding protein 1 (G3BP1). Downregulation of YTHDF2 is required for exercise-induced physiological cardiac hypertrophy. Moreover, myocardial YTHDF2 inhibition alleviated ischemia/reperfusion-induced acute injury and pathological remodeling. Our results here link lactate and lactylation modifications with RNA m<sup>6</sup>A reader YTHDF2 and highlight the physiological importance of this innovative post-transcriptional intrinsic regulation mechanism of cardiomyocyte responses to exercise. Decreasing lactylation or inhibiting YTHDF2/G3BP1 might represent a promising therapeutic strategy for cardiac diseases.</p>","PeriodicalId":8723,"journal":{"name":"Basic Research in Cardiology","volume":null,"pages":null},"PeriodicalIF":7.5,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140334588","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cardioprotection in cardiovascular surgery. 心血管手术中的心脏保护。
IF 7.5 1区 医学 Q1 CARDIAC & CARDIOVASCULAR SYSTEMS Pub Date : 2024-08-01 Epub Date: 2024-06-10 DOI: 10.1007/s00395-024-01062-0
Sharif A Sabe, Dwight D Harris, Mark Broadwin, Frank W Sellke

Since the invention of cardiopulmonary bypass, cardioprotective strategies have been investigated to mitigate ischemic injury to the heart during aortic cross-clamping and reperfusion injury with cross-clamp release. With advances in cardiac surgical and percutaneous techniques and post-operative management strategies including mechanical circulatory support, cardiac surgeons are able to operate on more complex patients. Therefore, there is a growing need for improved cardioprotective strategies to optimize outcomes in these patients. This review provides an overview of the basic principles of cardioprotection in the setting of cardiac surgery, including mechanisms of cardiac injury in the context of cardiopulmonary bypass, followed by a discussion of the specific approaches to optimizing cardioprotection in cardiac surgery, including refinements in cardiopulmonary bypass and cardioplegia, ischemic conditioning, use of specific anesthetic and pharmaceutical agents, and novel mechanical circulatory support technologies. Finally, translational strategies that investigate cardioprotection in the setting of cardiac surgery will be reviewed, with a focus on promising research in the areas of cell-based and gene therapy. Advances in this area will help cardiologists and cardiac surgeons mitigate myocardial ischemic injury, improve functional post-operative recovery, and optimize clinical outcomes in patients undergoing cardiac surgery.

自心肺旁路术发明以来,人们一直在研究心脏保护策略,以减轻主动脉交叉钳夹时对心脏造成的缺血性损伤以及交叉钳夹松开时造成的再灌注损伤。随着心脏外科手术和经皮技术以及包括机械循环支持在内的术后管理策略的进步,心脏外科医生能够为更复杂的病人进行手术。因此,人们越来越需要改进心脏保护策略,以优化这些患者的预后。本综述概述了心脏手术中心脏保护的基本原则,包括心肺旁路中心脏损伤的机制,随后讨论了优化心脏手术中心脏保护的具体方法,包括心肺旁路和心脏麻痹的改进、缺血调节、特定麻醉剂和药物的使用以及新型机械循环支持技术。最后,将对研究心脏手术中心脏保护的转化策略进行回顾,重点关注细胞疗法和基因疗法领域前景广阔的研究。这一领域的进展将有助于心脏病专家和心脏外科医生减轻心肌缺血损伤、改善术后功能恢复并优化心脏手术患者的临床疗效。
{"title":"Cardioprotection in cardiovascular surgery.","authors":"Sharif A Sabe, Dwight D Harris, Mark Broadwin, Frank W Sellke","doi":"10.1007/s00395-024-01062-0","DOIUrl":"10.1007/s00395-024-01062-0","url":null,"abstract":"<p><p>Since the invention of cardiopulmonary bypass, cardioprotective strategies have been investigated to mitigate ischemic injury to the heart during aortic cross-clamping and reperfusion injury with cross-clamp release. With advances in cardiac surgical and percutaneous techniques and post-operative management strategies including mechanical circulatory support, cardiac surgeons are able to operate on more complex patients. Therefore, there is a growing need for improved cardioprotective strategies to optimize outcomes in these patients. This review provides an overview of the basic principles of cardioprotection in the setting of cardiac surgery, including mechanisms of cardiac injury in the context of cardiopulmonary bypass, followed by a discussion of the specific approaches to optimizing cardioprotection in cardiac surgery, including refinements in cardiopulmonary bypass and cardioplegia, ischemic conditioning, use of specific anesthetic and pharmaceutical agents, and novel mechanical circulatory support technologies. Finally, translational strategies that investigate cardioprotection in the setting of cardiac surgery will be reviewed, with a focus on promising research in the areas of cell-based and gene therapy. Advances in this area will help cardiologists and cardiac surgeons mitigate myocardial ischemic injury, improve functional post-operative recovery, and optimize clinical outcomes in patients undergoing cardiac surgery.</p>","PeriodicalId":8723,"journal":{"name":"Basic Research in Cardiology","volume":null,"pages":null},"PeriodicalIF":7.5,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141295437","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
SGLT1 contributes to glucose-mediated exacerbation of ischemia-reperfusion injury in ex vivo rat heart. SGLT1 是葡萄糖介导的体外大鼠心脏缺血再灌注损伤加重的原因之一。
IF 7.5 1区 医学 Q1 CARDIAC & CARDIOVASCULAR SYSTEMS Pub Date : 2024-08-01 DOI: 10.1007/s00395-024-01071-z
Alhanoof Almalki, Sapna Arjun, Idris Harding, Hussain Jasem, Maria Kolatsi-Joannou, Daniyal J Jafree, Gideon Pomeranz, David A Long, Derek M Yellon, Robert M Bell

Hyperglycaemia is common during acute coronary syndromes (ACS) irrespective of diabetic status and portends excess infarct size and mortality, but the mechanisms underlying this effect are poorly understood. We hypothesized that sodium/glucose linked transporter-1 (SGLT1) might contribute to the effect of high-glucose during ACS and examined this using an ex-vivo rodent heart model of ischaemia-reperfusion injury. Langendorff-perfused rat hearts were subjected to 35 min ischemia and 2 h reperfusion, with variable glucose and reciprocal mannitol given during reperfusion in the presence of pharmacological inhibitors of SGLT1. Myocardial SGLT1 expression was determined in rat by rtPCR, RNAscope and immunohistochemistry, as well as in human by single-cell transcriptomic analysis. High glucose in non-diabetic rat heart exacerbated reperfusion injury, significantly increasing infarct size from 45 ± 3 to 65 ± 4% at 11-22 mmol/L glucose, respectively (p < 0.01), an association absent in diabetic heart (32 ± 1-37 ± 5%, p = NS). Rat heart expressed SGLT1 RNA and protein in vascular endothelium and cardiomyocytes, with similar expression found in human myocardium by single-nucleus RNA-sequencing. Rat SGLT1 expression was significantly reduced in diabetic versus non-diabetic heart (0.608 ± 0.08 compared with 1.116 ± 0.13 probe/nuclei, p < 0.01). Pharmacological inhibitors phlorizin, canagliflozin or mizagliflozoin in non-diabetic heart revealed that blockade of SGLT1 but not SGLT2, abrogated glucose-mediated excess reperfusion injury. Elevated glucose is injurious to the rat heart during reperfusion, exacerbating myocardial infarction in non-diabetic heart, whereas the diabetic heart is resistant to raised glucose, a finding which may be explained by lower myocardial SGLT1 expression. SGLT1 is expressed in vascular endothelium and cardiomyocytes and inhibiting SGLT1 abrogates excess glucose-mediated infarction. These data highlight SGLT1 as a potential clinical translational target to improve morbidity/mortality outcomes in hyperglycemic ACS patients.

无论是否患有糖尿病,高血糖在急性冠状动脉综合征(ACS)期间都很常见,并预示着梗死面积和死亡率的增加,但人们对这种影响的机制却知之甚少。我们假设钠/葡萄糖转运体-1(SGLT1)可能会在急性冠状动脉综合征期间对高血糖的影响做出贡献,并使用缺血再灌注损伤的啮齿类动物体外心脏模型对此进行了研究。对 Langendorff 灌注的大鼠心脏进行 35 分钟缺血和 2 小时再灌注,在 SGLT1 药物抑制剂存在的情况下,在再灌注期间给予不同的葡萄糖和对等甘露醇。通过 rtPCR、RNAscope 和免疫组化测定了大鼠心肌 SGLT1 的表达,并通过单细胞转录组分析测定了人类心肌 SGLT1 的表达。非糖尿病大鼠心脏中的高糖加重了再灌注损伤,在葡萄糖浓度为 11-22 mmol/L 时,梗死面积从 45±3% 显著增加到 65±4% (p<0.05),在葡萄糖浓度为 11-22 mmol/L 时,梗死面积从 45±3% 显著增加到 65±4% (p<0.05)。
{"title":"SGLT1 contributes to glucose-mediated exacerbation of ischemia-reperfusion injury in ex vivo rat heart.","authors":"Alhanoof Almalki, Sapna Arjun, Idris Harding, Hussain Jasem, Maria Kolatsi-Joannou, Daniyal J Jafree, Gideon Pomeranz, David A Long, Derek M Yellon, Robert M Bell","doi":"10.1007/s00395-024-01071-z","DOIUrl":"https://doi.org/10.1007/s00395-024-01071-z","url":null,"abstract":"<p><p>Hyperglycaemia is common during acute coronary syndromes (ACS) irrespective of diabetic status and portends excess infarct size and mortality, but the mechanisms underlying this effect are poorly understood. We hypothesized that sodium/glucose linked transporter-1 (SGLT1) might contribute to the effect of high-glucose during ACS and examined this using an ex-vivo rodent heart model of ischaemia-reperfusion injury. Langendorff-perfused rat hearts were subjected to 35 min ischemia and 2 h reperfusion, with variable glucose and reciprocal mannitol given during reperfusion in the presence of pharmacological inhibitors of SGLT1. Myocardial SGLT1 expression was determined in rat by rtPCR, RNAscope and immunohistochemistry, as well as in human by single-cell transcriptomic analysis. High glucose in non-diabetic rat heart exacerbated reperfusion injury, significantly increasing infarct size from 45 ± 3 to 65 ± 4% at 11-22 mmol/L glucose, respectively (p < 0.01), an association absent in diabetic heart (32 ± 1-37 ± 5%, p = NS). Rat heart expressed SGLT1 RNA and protein in vascular endothelium and cardiomyocytes, with similar expression found in human myocardium by single-nucleus RNA-sequencing. Rat SGLT1 expression was significantly reduced in diabetic versus non-diabetic heart (0.608 ± 0.08 compared with 1.116 ± 0.13 probe/nuclei, p < 0.01). Pharmacological inhibitors phlorizin, canagliflozin or mizagliflozoin in non-diabetic heart revealed that blockade of SGLT1 but not SGLT2, abrogated glucose-mediated excess reperfusion injury. Elevated glucose is injurious to the rat heart during reperfusion, exacerbating myocardial infarction in non-diabetic heart, whereas the diabetic heart is resistant to raised glucose, a finding which may be explained by lower myocardial SGLT1 expression. SGLT1 is expressed in vascular endothelium and cardiomyocytes and inhibiting SGLT1 abrogates excess glucose-mediated infarction. These data highlight SGLT1 as a potential clinical translational target to improve morbidity/mortality outcomes in hyperglycemic ACS patients.</p>","PeriodicalId":8723,"journal":{"name":"Basic Research in Cardiology","volume":null,"pages":null},"PeriodicalIF":7.5,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141858946","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Mitochondrial calcium in cardiac ischemia/reperfusion injury and cardioprotection. 线粒体钙在心脏缺血/再灌注损伤和心脏保护中的作用。
IF 7.5 1区 医学 Q1 CARDIAC & CARDIOVASCULAR SYSTEMS Pub Date : 2024-08-01 Epub Date: 2024-06-19 DOI: 10.1007/s00395-024-01060-2
Edoardo Bertero, Tudor-Alexandru Popoiu, Christoph Maack

Mitochondrial calcium (Ca2+) signals play a central role in cardiac homeostasis and disease. In the healthy heart, mitochondrial Ca2+ levels modulate the rate of oxidative metabolism to match the rate of adenosine triphosphate consumption in the cytosol. During ischemia/reperfusion (I/R) injury, pathologically high levels of Ca2+ in the mitochondrial matrix trigger the opening of the mitochondrial permeability transition pore, which releases solutes and small proteins from the matrix, causing mitochondrial swelling and ultimately leading to cell death. Pharmacological and genetic approaches to tune mitochondrial Ca2+ handling by regulating the activity of the main Ca2+ influx and efflux pathways, i.e., the mitochondrial Ca2+ uniporter and sodium/Ca2+ exchanger, represent promising therapeutic strategies to protect the heart from I/R injury.

线粒体钙(Ca2+)信号在心脏稳态和疾病中发挥着核心作用。在健康的心脏中,线粒体 Ca2+ 水平会调节氧化代谢速率,使之与细胞质中三磷酸腺苷的消耗速率相匹配。在缺血/再灌注(I/R)损伤期间,线粒体基质中病理性高水平的 Ca2+ 会触发线粒体通透性转换孔的打开,从而从基质中释放出溶质和小蛋白,引起线粒体肿胀,最终导致细胞死亡。通过调节主要 Ca2+ 流入和流出途径(即线粒体 Ca2+ 单通道和钠/Ca2+ 交换器)的活性来调整线粒体 Ca2+ 处理的药理和遗传方法,是保护心脏免受 I/R 损伤的有前途的治疗策略。
{"title":"Mitochondrial calcium in cardiac ischemia/reperfusion injury and cardioprotection.","authors":"Edoardo Bertero, Tudor-Alexandru Popoiu, Christoph Maack","doi":"10.1007/s00395-024-01060-2","DOIUrl":"10.1007/s00395-024-01060-2","url":null,"abstract":"<p><p>Mitochondrial calcium (Ca<sup>2+</sup>) signals play a central role in cardiac homeostasis and disease. In the healthy heart, mitochondrial Ca<sup>2+</sup> levels modulate the rate of oxidative metabolism to match the rate of adenosine triphosphate consumption in the cytosol. During ischemia/reperfusion (I/R) injury, pathologically high levels of Ca<sup>2+</sup> in the mitochondrial matrix trigger the opening of the mitochondrial permeability transition pore, which releases solutes and small proteins from the matrix, causing mitochondrial swelling and ultimately leading to cell death. Pharmacological and genetic approaches to tune mitochondrial Ca<sup>2+</sup> handling by regulating the activity of the main Ca<sup>2+</sup> influx and efflux pathways, i.e., the mitochondrial Ca<sup>2+</sup> uniporter and sodium/Ca<sup>2+</sup> exchanger, represent promising therapeutic strategies to protect the heart from I/R injury.</p>","PeriodicalId":8723,"journal":{"name":"Basic Research in Cardiology","volume":null,"pages":null},"PeriodicalIF":7.5,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11319510/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141417598","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Basic Research in Cardiology
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1