首页 > 最新文献

Basic Research in Cardiology最新文献

英文 中文
Assessing customized multivalent chemokine-binding peptide treatment in a murine model of coxsackievirus B3 myocarditis
IF 9.5 1区 医学 Q1 CARDIAC & CARDIOVASCULAR SYSTEMS Pub Date : 2025-02-26 DOI: 10.1007/s00395-025-01098-w
Nicolas Kelm, Meike Kespohl, Gintare Smagurauskaite, Serena Vales, Kalimuthu Karuppanan, Philomena Mburu, Arne Thiele, Sandra Pinkert, Thomas Bukur, Michael Mülleder, Nikolaus Berndt, Karin Klingel, Matthias M. Gaida, Shoumo Bhattacharya, Antje Beling

Myocarditis, an inflammatory disease of the heart muscle, is often triggered by viral infections. This inflammation, which can lead to severe cardiac dysfunction and adverse outcomes, is mediated by various CC and CXC chemokines that interact with receptors in a “one-to-many” fashion. Ticks have evolved chemokine-binding salivary proteins known as Evasins, which efficiently suppress inflammation. This study explores a tailored Evasin-derived CC chemokine-targeting strategy using a 17-mer synthetic dimeric peptide, BK1.3. This peptide inhibits the inflammatory chemokines CCL2, CCL3, CCL7, and CCL8 in murine Coxsackievirus B3 (CVB3) infection, a viral trigger of myocarditis. Administered at a dose of 5 mg/kg twice daily, BK1.3 effectively maintains virus control without exacerbating CVB3-induced morbidity markers, such as hemodynamic compromise, multiorgan failure with hepatitis and pancreatitis, hypothermia, hypoglycemia, and weight loss. Metabolic profiling combined with proteomics reveals preserved reprogramming of lipid storage and gluconeogenesis capacity in the liver, alongside sustained energy production in the injured heart muscle. In survivors of acute CVB3 infection exhibiting manifestations of the subacute phase, BK1.3 enhances virus control, reduces myeloid cell infiltration in the heart and liver, improves markers of liver injury, and alleviates cardiac dysfunction, as evidenced by echocardiographic global longitudinal strain analysis. These findings affirm the safety profile of BK1.3 peptide therapeutics in a preclinical mouse model of acute CVB3 infection and emphasize its potential for therapeutic advancement in addressing virus-induced inflammation in the heart.

{"title":"Assessing customized multivalent chemokine-binding peptide treatment in a murine model of coxsackievirus B3 myocarditis","authors":"Nicolas Kelm, Meike Kespohl, Gintare Smagurauskaite, Serena Vales, Kalimuthu Karuppanan, Philomena Mburu, Arne Thiele, Sandra Pinkert, Thomas Bukur, Michael Mülleder, Nikolaus Berndt, Karin Klingel, Matthias M. Gaida, Shoumo Bhattacharya, Antje Beling","doi":"10.1007/s00395-025-01098-w","DOIUrl":"https://doi.org/10.1007/s00395-025-01098-w","url":null,"abstract":"<p>Myocarditis, an inflammatory disease of the heart muscle, is often triggered by viral infections. This inflammation, which can lead to severe cardiac dysfunction and adverse outcomes, is mediated by various CC and CXC chemokines that interact with receptors in a “one-to-many” fashion. Ticks have evolved chemokine-binding salivary proteins known as Evasins, which efficiently suppress inflammation. This study explores a tailored Evasin-derived CC chemokine-targeting strategy using a 17-mer synthetic dimeric peptide, BK1.3. This peptide inhibits the inflammatory chemokines CCL2, CCL3, CCL7, and CCL8 in murine Coxsackievirus B3 (CVB3) infection, a viral trigger of myocarditis. Administered at a dose of 5 mg/kg twice daily, BK1.3 effectively maintains virus control without exacerbating CVB3-induced morbidity markers, such as hemodynamic compromise, multiorgan failure with hepatitis and pancreatitis, hypothermia, hypoglycemia, and weight loss. Metabolic profiling combined with proteomics reveals preserved reprogramming of lipid storage and gluconeogenesis capacity in the liver, alongside sustained energy production in the injured heart muscle. In survivors of acute CVB3 infection exhibiting manifestations of the subacute phase, BK1.3 enhances virus control, reduces myeloid cell infiltration in the heart and liver, improves markers of liver injury, and alleviates cardiac dysfunction, as evidenced by echocardiographic global longitudinal strain analysis. These findings affirm the safety profile of BK1.3 peptide therapeutics in a preclinical mouse model of acute CVB3 infection and emphasize its potential for therapeutic advancement in addressing virus-induced inflammation in the heart.</p>","PeriodicalId":8723,"journal":{"name":"Basic Research in Cardiology","volume":"27 1","pages":""},"PeriodicalIF":9.5,"publicationDate":"2025-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143495156","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Associations between female sex hormones, estrous cycle, ischemic preconditioning and myocardial infarct size after ischemia–reperfusion injury
IF 9.5 1区 医学 Q1 CARDIAC & CARDIOVASCULAR SYSTEMS Pub Date : 2025-02-13 DOI: 10.1007/s00395-025-01099-9
Tetiana Pylova, Ahmed Elmahdy, Maryna Krasnikova, Abhishek Jha, Erik Axel Andersson, Yalda Kakaei, Aaron Shekka Espinosa, Amin Al-Awar, Ermir Zulfaj, Amirali Nejat, Valentyna Sevastianova, Mana Kalani, Henrik Ryberg, Åsa Tivesten, Elmir Omerovic, Björn Redfors

Studies on sex differences in myocardial infarction (MI) typically focus on males versus females, the exploration of hormonal physiologic variations and their impact on the infarct size remains limited. The objective of this study was to examine whether infarct size after myocardial ischemia/reperfusion injury in female rats differs in different phases of the estrous cycle, and according to the levels of sex hormones; and to assess whether the effect of ischemic preconditioning on infarct size varies in different phases of the estrous cycle and between sexes. Female rats were divided into three groups based on the estrous cycle: proestrus, estrus, and diestrus. A fourth group consisted of ovariectomized female rats. Male rats were included as a fifth group, and orchiectomized males as a sixth group. Each group underwent ischemia/reperfusion injury, with or without prior ischemic preconditioning (IPC). Plasma sex hormone levels were measured with gas chromatography-tandem mass spectrometry. Females in the proestrus showed significantly smaller infarct size compared to all other groups. Multivariable analyses identified proestrus, IPC, and estradiol as independent predictors of smaller infarct size while male sex and gonadectomy as independent predictors of larger infarct size. There was a statistical interaction between IPC and both sex and hormonal status, with a greater protective effect of IPC on infarct size in males and gonadectomized rats. After ischemia–reperfusion, proestrus female rats developed the smallest while male and gonadectomized rats the largest infarct size. Conversely, IPC conferred greater cardioprotection in male and gonadectomized rats than females in proestrus.

{"title":"Associations between female sex hormones, estrous cycle, ischemic preconditioning and myocardial infarct size after ischemia–reperfusion injury","authors":"Tetiana Pylova, Ahmed Elmahdy, Maryna Krasnikova, Abhishek Jha, Erik Axel Andersson, Yalda Kakaei, Aaron Shekka Espinosa, Amin Al-Awar, Ermir Zulfaj, Amirali Nejat, Valentyna Sevastianova, Mana Kalani, Henrik Ryberg, Åsa Tivesten, Elmir Omerovic, Björn Redfors","doi":"10.1007/s00395-025-01099-9","DOIUrl":"https://doi.org/10.1007/s00395-025-01099-9","url":null,"abstract":"<p>Studies on sex differences in myocardial infarction (MI) typically focus on males versus females, the exploration of hormonal physiologic variations and their impact on the infarct size remains limited. The objective of this study was to examine whether infarct size after myocardial ischemia/reperfusion injury in female rats differs in different phases of the estrous cycle, and according to the levels of sex hormones; and to assess whether the effect of ischemic preconditioning on infarct size varies in different phases of the estrous cycle and between sexes. Female rats were divided into three groups based on the estrous cycle: proestrus, estrus, and diestrus. A fourth group consisted of ovariectomized female rats. Male rats were included as a fifth group, and orchiectomized males as a sixth group. Each group underwent ischemia/reperfusion injury, with or without prior ischemic preconditioning (IPC). Plasma sex hormone levels were measured with gas chromatography-tandem mass spectrometry. Females in the proestrus showed significantly smaller infarct size compared to all other groups. Multivariable analyses identified proestrus, IPC, and estradiol as independent predictors of smaller infarct size while male sex and gonadectomy as independent predictors of larger infarct size. There was a statistical interaction between IPC and both sex and hormonal status, with a greater protective effect of IPC on infarct size in males and gonadectomized rats. After ischemia–reperfusion, proestrus female rats developed the smallest while male and gonadectomized rats the largest infarct size. Conversely, IPC conferred greater cardioprotection in male and gonadectomized rats than females in proestrus.</p>","PeriodicalId":8723,"journal":{"name":"Basic Research in Cardiology","volume":"7 1","pages":""},"PeriodicalIF":9.5,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143401933","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Evolocumab attenuates myocardial ischemia/reperfusion injury by blocking PCSK9/LIAS-mediated cuproptosis of cardiomyocytes
IF 9.5 1区 医学 Q1 CARDIAC & CARDIOVASCULAR SYSTEMS Pub Date : 2025-02-11 DOI: 10.1007/s00395-025-01100-5
Zi-Zhuo Li, Lei Guo, Yan-Liang An, Wei-Jia Yu, Ding-Yu Shi, Qiu-Yue Lin, Bo Zhang

Myocardial ischemia‒reperfusion (I/R) injury is the crucial cause of poor prognosis after revascularization in patients with myocardial infarction (MI) due to the lack of specific therapeutic drugs. Proprotein convertase subtilisin/Kexin type 9 (PCSK9) is related to the pathogenesis and progression of various cardiovascular diseases. However, the specific role of PCSK9 in I/R-induced cardiac injury remains to be further investigated. In this study, wild-type (WT) C57BL/6J mice were administered evolocumab (a monoclonal antibody of PCSK9) before I/R surgery. Cardiac damage and function were assessed by echocardiography and TTC/Evans Blue staining. Inflammation, oxidative stress, mitochondrial dysfunction, and cuproptosis were evaluated by histopathology and qPCR. The interaction between proteins was confirmed by protein docking and co-immunoprecipitation. Our data revealed that PCSK9 level was increased in I/R-induced mouse serum and hearts and in serum of MI patients. Furthermore, evolocumab significantly improved cardiac injury and dysfunction, inflammation, oxidative stress, and cuproptosis. Mechanistically, evolocumab obstructs the direct interaction of PCSK9 and LIAS, and subsequently inhibits cardiomyocyte cuproptosis. In conclusion, inhibition of PCSK9 alleviates I/R-induced cardiac remodeling and dysfunction by targeting LIAS-mediated cuproptosis, which may be a novel therapeutic strategy for patients with ischemic cardiomyopathy.

{"title":"Evolocumab attenuates myocardial ischemia/reperfusion injury by blocking PCSK9/LIAS-mediated cuproptosis of cardiomyocytes","authors":"Zi-Zhuo Li, Lei Guo, Yan-Liang An, Wei-Jia Yu, Ding-Yu Shi, Qiu-Yue Lin, Bo Zhang","doi":"10.1007/s00395-025-01100-5","DOIUrl":"https://doi.org/10.1007/s00395-025-01100-5","url":null,"abstract":"<p>Myocardial ischemia‒reperfusion (I/R) injury is the crucial cause of poor prognosis after revascularization in patients with myocardial infarction (MI) due to the lack of specific therapeutic drugs. Proprotein convertase subtilisin/Kexin type 9 (PCSK9) is related to the pathogenesis and progression of various cardiovascular diseases. However, the specific role of PCSK9 in I/R-induced cardiac injury remains to be further investigated. In this study, wild-type (WT) C57BL/6J mice were administered evolocumab (a monoclonal antibody of PCSK9) before I/R surgery. Cardiac damage and function were assessed by echocardiography and TTC/Evans Blue staining. Inflammation, oxidative stress, mitochondrial dysfunction, and cuproptosis were evaluated by histopathology and qPCR. The interaction between proteins was confirmed by protein docking and co-immunoprecipitation. Our data revealed that PCSK9 level was increased in I/R-induced mouse serum and hearts and in serum of MI patients. Furthermore, evolocumab significantly improved cardiac injury and dysfunction, inflammation, oxidative stress, and cuproptosis. Mechanistically, evolocumab obstructs the direct interaction of PCSK9 and LIAS, and subsequently inhibits cardiomyocyte cuproptosis. In conclusion, inhibition of PCSK9 alleviates I/R-induced cardiac remodeling and dysfunction by targeting LIAS-mediated cuproptosis, which may be a novel therapeutic strategy for patients with ischemic cardiomyopathy.</p>","PeriodicalId":8723,"journal":{"name":"Basic Research in Cardiology","volume":"29 1","pages":""},"PeriodicalIF":9.5,"publicationDate":"2025-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143385124","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The role and mechanism of epigenetics in anticancer drug-induced cardiotoxicity. 表观遗传学在抗癌药物诱导的心脏毒性中的作用和机制。
IF 7.5 1区 医学 Q1 CARDIAC & CARDIOVASCULAR SYSTEMS Pub Date : 2025-02-01 Epub Date: 2024-05-09 DOI: 10.1007/s00395-024-01054-0
Xuening Liu, Zijian Li

Cardiovascular disease is the main factor contributing to the global burden of diseases, and the cardiotoxicity caused by anticancer drugs is an essential component that cannot be ignored. With the development of anticancer drugs, the survival period of cancer patients is prolonged; however, the cardiotoxicity caused by anticancer drugs is becoming increasingly prominent. Currently, cardiovascular disease has emerged as the second leading cause of mortality among long-term cancer survivors. Anticancer drug-induced cardiotoxicity has become a frontier and hot topic. The discovery of epigenetics has given the possibility of environmental changes in gene expression, protein synthesis, and traits. It has been found that epigenetics plays a pivotal role in promoting cardiovascular diseases, such as heart failure, coronary heart disease, and hypertension. In recent years, increasing studies have underscored the crucial roles played by epigenetics in anticancer drug-induced cardiotoxicity. Here, we provide a comprehensive overview of the role and mechanisms of epigenetics in anticancer drug-induced cardiotoxicity.

心血管疾病是造成全球疾病负担的主要因素,而抗癌药物引起的心脏毒性是不可忽视的重要组成部分。随着抗癌药物的发展,癌症患者的生存期得以延长,但抗癌药物引起的心脏毒性也日益突出。目前,心血管疾病已成为长期癌症幸存者的第二大死因。抗癌药物引起的心脏毒性已成为一个前沿和热门话题。表观遗传学的发现为基因表达、蛋白质合成和性状的环境变化提供了可能。研究发现,表观遗传学在促进心血管疾病(如心力衰竭、冠心病和高血压)的发生中起着举足轻重的作用。近年来,越来越多的研究强调了表观遗传学在抗癌药物诱导的心脏毒性中发挥的关键作用。在此,我们将全面概述表观遗传学在抗癌药物诱导的心脏毒性中的作用和机制:Kindly check and confirm whether the corresponding author affiliation is correctly identified.We have checked the corresponding author affiliation is correct.
{"title":"The role and mechanism of epigenetics in anticancer drug-induced cardiotoxicity.","authors":"Xuening Liu, Zijian Li","doi":"10.1007/s00395-024-01054-0","DOIUrl":"10.1007/s00395-024-01054-0","url":null,"abstract":"<p><p>Cardiovascular disease is the main factor contributing to the global burden of diseases, and the cardiotoxicity caused by anticancer drugs is an essential component that cannot be ignored. With the development of anticancer drugs, the survival period of cancer patients is prolonged; however, the cardiotoxicity caused by anticancer drugs is becoming increasingly prominent. Currently, cardiovascular disease has emerged as the second leading cause of mortality among long-term cancer survivors. Anticancer drug-induced cardiotoxicity has become a frontier and hot topic. The discovery of epigenetics has given the possibility of environmental changes in gene expression, protein synthesis, and traits. It has been found that epigenetics plays a pivotal role in promoting cardiovascular diseases, such as heart failure, coronary heart disease, and hypertension. In recent years, increasing studies have underscored the crucial roles played by epigenetics in anticancer drug-induced cardiotoxicity. Here, we provide a comprehensive overview of the role and mechanisms of epigenetics in anticancer drug-induced cardiotoxicity.</p>","PeriodicalId":8723,"journal":{"name":"Basic Research in Cardiology","volume":" ","pages":"11-24"},"PeriodicalIF":7.5,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140897246","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Molecular fingerprints of cardiovascular toxicities of immune checkpoint inhibitors. 免疫检查点抑制剂心血管毒性的分子指纹。
IF 7.5 1区 医学 Q1 CARDIAC & CARDIOVASCULAR SYSTEMS Pub Date : 2025-02-01 Epub Date: 2024-07-17 DOI: 10.1007/s00395-024-01068-8
Tamás G Gergely, Zsófia D Drobni, Nabil V Sayour, Péter Ferdinandy, Zoltán V Varga

Immune checkpoint inhibitors (ICIs) have revolutionized cancer therapy by unleashing the power of the immune system against malignant cells. However, their use is associated with a spectrum of adverse effects, including cardiovascular complications, which can pose significant clinical challenges. Several mechanisms contribute to cardiovascular toxicity associated with ICIs. First, the dysregulation of immune checkpoints, such as cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) and programmed cell death protein-1 (PD-1) and its ligand (PD-L1), and molecular mimicry with cardiac autoantigens, leads to immune-related adverse events, including myocarditis and vasculitis. These events result from the aberrant activation of T cells against self-antigens within the myocardium or vascular endothelium. Second, the disruption of immune homeostasis by ICIs can lead to autoimmune-mediated inflammation of cardiac tissues, manifesting as cardiac dysfunction and heart failure, arrhythmias, or pericarditis. Furthermore, the upregulation of inflammatory cytokines, particularly tumor necrosis factor-alpha, interferon-γ, interleukin-1β, interleukin-6, and interleukin-17 contributes to cardiac and endothelial dysfunction, plaque destabilization, and thrombosis, exacerbating cardiovascular risk on the long term. Understanding the intricate mechanisms of cardiovascular side effects induced by ICIs is crucial for optimizing patient care and to ensure the safe and effective integration of immunotherapy into a broader range of cancer treatment protocols. The clinical implications of these mechanisms underscore the importance of vigilant monitoring and early detection of cardiovascular toxicity in patients receiving ICIs. Future use of these key pathological mediators as biomarkers may aid in prompt diagnosis of cardiotoxicity and will allow timely interventions.

免疫检查点抑制剂(ICIs)通过释放免疫系统对抗恶性细胞的力量,彻底改变了癌症治疗。然而,使用这些药物也会产生一系列不良反应,包括心血管并发症,这给临床治疗带来了巨大挑战。造成 ICIs 心血管毒性的机制有多种。首先,细胞毒性T淋巴细胞相关蛋白4(CTLA-4)和程序性细胞死亡蛋白-1(PD-1)及其配体(PD-L1)等免疫检查点的失调,以及与心脏自身抗原的分子模拟,会导致免疫相关不良事件,包括心肌炎和血管炎。这些不良事件是由于 T 细胞针对心肌或血管内皮自身抗原的异常激活所致。其次,ICIs 对免疫平衡的破坏可导致自身免疫介导的心脏组织炎症,表现为心脏功能障碍和心力衰竭、心律失常或心包炎。此外,炎性细胞因子,尤其是肿瘤坏死因子-α、干扰素-γ、白细胞介素-1β、白细胞介素-6 和白细胞介素-17 的上调会导致心脏和内皮功能障碍、斑块不稳定和血栓形成,从而长期加剧心血管风险。了解 ICIs 诱发心血管副作用的复杂机制对于优化患者护理以及确保将免疫疗法安全有效地纳入更广泛的癌症治疗方案至关重要。这些机制的临床意义强调了对接受 ICIs 治疗的患者进行警惕性监测和早期发现心血管毒性的重要性。未来使用这些关键病理介质作为生物标记物可能有助于及时诊断心脏毒性并进行及时干预。
{"title":"Molecular fingerprints of cardiovascular toxicities of immune checkpoint inhibitors.","authors":"Tamás G Gergely, Zsófia D Drobni, Nabil V Sayour, Péter Ferdinandy, Zoltán V Varga","doi":"10.1007/s00395-024-01068-8","DOIUrl":"10.1007/s00395-024-01068-8","url":null,"abstract":"<p><p>Immune checkpoint inhibitors (ICIs) have revolutionized cancer therapy by unleashing the power of the immune system against malignant cells. However, their use is associated with a spectrum of adverse effects, including cardiovascular complications, which can pose significant clinical challenges. Several mechanisms contribute to cardiovascular toxicity associated with ICIs. First, the dysregulation of immune checkpoints, such as cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) and programmed cell death protein-1 (PD-1) and its ligand (PD-L1), and molecular mimicry with cardiac autoantigens, leads to immune-related adverse events, including myocarditis and vasculitis. These events result from the aberrant activation of T cells against self-antigens within the myocardium or vascular endothelium. Second, the disruption of immune homeostasis by ICIs can lead to autoimmune-mediated inflammation of cardiac tissues, manifesting as cardiac dysfunction and heart failure, arrhythmias, or pericarditis. Furthermore, the upregulation of inflammatory cytokines, particularly tumor necrosis factor-alpha, interferon-γ, interleukin-1β, interleukin-6, and interleukin-17 contributes to cardiac and endothelial dysfunction, plaque destabilization, and thrombosis, exacerbating cardiovascular risk on the long term. Understanding the intricate mechanisms of cardiovascular side effects induced by ICIs is crucial for optimizing patient care and to ensure the safe and effective integration of immunotherapy into a broader range of cancer treatment protocols. The clinical implications of these mechanisms underscore the importance of vigilant monitoring and early detection of cardiovascular toxicity in patients receiving ICIs. Future use of these key pathological mediators as biomarkers may aid in prompt diagnosis of cardiotoxicity and will allow timely interventions.</p>","PeriodicalId":8723,"journal":{"name":"Basic Research in Cardiology","volume":" ","pages":"187-205"},"PeriodicalIF":7.5,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11790702/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141632513","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Exercise, cancer, and the cardiovascular system: clinical effects and mechanistic insights. 运动、癌症和心血管系统:临床效果和机理认识。
IF 7.5 1区 医学 Q1 CARDIAC & CARDIOVASCULAR SYSTEMS Pub Date : 2025-02-01 Epub Date: 2024-02-14 DOI: 10.1007/s00395-024-01034-4
Simon Wernhart, Tienush Rassaf

Cardiovascular diseases and cancer are the leading causes of death in the Western world and share common risk factors. Reduced cardiorespiratory fitness (CRF) is a major determinant of cardiovascular morbidity and cancer survival. In this review we discuss cancer- induced disturbances of parenchymal, cellular, and mitochondrial function, which limit CRF and may be antagonized and attenuated through exercise training. We show the impact of CRF on cancer survival and its attenuating effects on cardiotoxicity of cancer-related treatment. Tailored exercise programs are not yet available for each tumor entity as several trials were performed in heterogeneous populations without adequate cardiopulmonary exercise testing (CPET) prior to exercise prescription and with a wide variation of exercise modalities. There is emerging evidence that exercise may be a crucial pillar in cancer treatment and a tool to mitigate cardiotoxic treatment effects. We discuss modalities of aerobic exercise and resistance training and their potential to improve CRF in cancer patients and provide an example of a periodization model for exercise training in cancer.

在西方国家,心血管疾病和癌症是导致死亡的主要原因,它们有着共同的风险因素。心肺功能下降是心血管疾病发病率和癌症存活率的主要决定因素。在这篇综述中,我们讨论了癌症诱发的实质、细胞和线粒体功能紊乱,这些紊乱限制了心肺功能,并可能通过运动训练加以拮抗和减弱。我们展示了 CRF 对癌症生存的影响,以及它对癌症相关治疗的心脏毒性的减弱作用。目前还没有为每种肿瘤实体量身定制的运动计划,因为一些试验是在异质人群中进行的,在开运动处方之前没有进行充分的心肺运动测试(CPET),而且运动方式也有很大差异。越来越多的证据表明,运动可能是癌症治疗的重要支柱,也是减轻心脏毒性治疗效果的工具。我们讨论了有氧运动和阻力训练的模式及其改善癌症患者 CRF 的潜力,并提供了一个癌症运动训练周期化模式的实例。
{"title":"Exercise, cancer, and the cardiovascular system: clinical effects and mechanistic insights.","authors":"Simon Wernhart, Tienush Rassaf","doi":"10.1007/s00395-024-01034-4","DOIUrl":"10.1007/s00395-024-01034-4","url":null,"abstract":"<p><p>Cardiovascular diseases and cancer are the leading causes of death in the Western world and share common risk factors. Reduced cardiorespiratory fitness (CRF) is a major determinant of cardiovascular morbidity and cancer survival. In this review we discuss cancer- induced disturbances of parenchymal, cellular, and mitochondrial function, which limit CRF and may be antagonized and attenuated through exercise training. We show the impact of CRF on cancer survival and its attenuating effects on cardiotoxicity of cancer-related treatment. Tailored exercise programs are not yet available for each tumor entity as several trials were performed in heterogeneous populations without adequate cardiopulmonary exercise testing (CPET) prior to exercise prescription and with a wide variation of exercise modalities. There is emerging evidence that exercise may be a crucial pillar in cancer treatment and a tool to mitigate cardiotoxic treatment effects. We discuss modalities of aerobic exercise and resistance training and their potential to improve CRF in cancer patients and provide an example of a periodization model for exercise training in cancer.</p>","PeriodicalId":8723,"journal":{"name":"Basic Research in Cardiology","volume":" ","pages":"35-55"},"PeriodicalIF":7.5,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11790717/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139728833","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cardioprotection of voluntary exercise against breast cancer-induced cardiac injury via STAT3. 自愿运动通过 STAT3 对乳腺癌诱发的心脏损伤起到保护作用
IF 7.5 1区 医学 Q1 CARDIAC & CARDIOVASCULAR SYSTEMS Pub Date : 2025-02-01 Epub Date: 2024-08-19 DOI: 10.1007/s00395-024-01076-8
Lan Wu, Zhi-Zheng Li, Hao Yang, Li-Zhi Cao, Xiao-Ying Wang, Dong-Liang Wang, Emeli Chatterjee, Yan-Fei Li, Gang Huang

Exercise is an effective way to alleviate breast cancer-induced cardiac injury to a certain extent. However, whether voluntary exercise (VE) activates cardiac signal transducer and activator of transcription 3 (STAT3) and the underlying mechanisms remain unclear. This study investigated the role of STAT3-microRNA(miRNA)-targeted protein axis in VE against breast cancer-induced cardiac injury.VE for 4 weeks not only improved cardiac function of transgenic breast cancer female mice [mouse mammary tumor virus-polyomavirus middle T antigen (MMTV-PyMT +)] compared with littermate mice with no cancer (MMTV-PyMT -), but also increased myocardial STAT3 tyrosine 705 phosphorylation. Significantly more obvious cardiac fibrosis, smaller cardiomyocyte size, lower cell viability, and higher serum tumor necrosis factor (TNF)-α were shown in MMTV-PyMT + mice compared with MMTV-PyMT - mice, which were ameliorated by VE. However, VE did not influence the tumor growth. MiRNA sequencing identified that miR-181a-5p was upregulated and miR-130b-3p was downregulated in VE induced-cardioprotection. Myocardial injection of Adeno-associated virus serotype 9 driving STAT3 tyrosine 705 mutations abolished cardioprotective effects above. Myocardial STAT3 was identified as the transcription factor binding the promoters of pri-miR-181a (the precursor of miR-181a-5p) and HOX transcript antisense RNA (HOTAIR, sponged miR-130b-3p) in isolated cardiomyocytes. Furthermore, miR-181a-5p targeting PTEN and miR-130b-3p targeting Zinc finger and BTB domain containing protein 20 (Zbtb20) were proved in AC-16 cells. These findings indicated that VE protects against breast cancer-induced cardiac injury via activating STAT3 to promote miR-181a-5p targeting PTEN and to promote HOTAIR to sponge miR-130b-3p targeting Zbtb20, helping to develop new targets in exercise therapy for breast cancer-induced cardiac injury.

运动是在一定程度上缓解乳腺癌诱发的心脏损伤的有效方法。然而,自主运动(VE)是否能激活心脏信号转导子和转录激活子3(STAT3)及其内在机制仍不清楚。本研究探讨了STAT3-microRNA(miRNA)-靶向蛋白轴在VE对抗乳腺癌诱导的心脏损伤中的作用。与未患乳腺癌的同窝小鼠(MMTV-PyMT -)相比,持续4周的VE不仅能改善转基因乳腺癌雌性小鼠[小鼠乳腺肿瘤病毒-多瘤病毒中间T抗原(MMTV-PyMT +)]的心脏功能,还能增加心肌STAT3酪氨酸705磷酸化。与 MMTV-PyMT - 小鼠相比,MMTV-PyMT + 小鼠的心肌纤维化更明显,心肌细胞体积更小,细胞存活率更低,血清肿瘤坏死因子(TNF)-α更高。然而,VE并不影响肿瘤的生长。MiRNA 测序发现,在 VE 诱导的心肌保护中,miR-181a-5p 上调,miR-130b-3p 下调。心肌注射驱动STAT3酪氨酸705突变的9号血清型腺相关病毒后,上述心脏保护作用消失。在离体心肌细胞中,心肌 STAT3 被确定为结合 pri-miR-181a(miR-181a-5p 的前体)和 HOX 转录本反义 RNA(HOTAIR,海绵状 miR-130b-3p)启动子的转录因子。此外,在 AC-16 细胞中还证实了靶向 PTEN 的 miR-181a-5p 和靶向锌指和含 BTB 结构域蛋白 20(Zbtb20)的 miR-130b-3p。这些研究结果表明,VE通过激活STAT3促进靶向PTEN的miR-181a-5p和促进HOTAIR海绵化靶向Zbtb20的miR-130b-3p来保护乳腺癌诱导的心脏损伤,有助于开发运动疗法治疗乳腺癌诱导的心脏损伤的新靶点。
{"title":"Cardioprotection of voluntary exercise against breast cancer-induced cardiac injury via STAT3.","authors":"Lan Wu, Zhi-Zheng Li, Hao Yang, Li-Zhi Cao, Xiao-Ying Wang, Dong-Liang Wang, Emeli Chatterjee, Yan-Fei Li, Gang Huang","doi":"10.1007/s00395-024-01076-8","DOIUrl":"10.1007/s00395-024-01076-8","url":null,"abstract":"<p><p>Exercise is an effective way to alleviate breast cancer-induced cardiac injury to a certain extent. However, whether voluntary exercise (VE) activates cardiac signal transducer and activator of transcription 3 (STAT3) and the underlying mechanisms remain unclear. This study investigated the role of STAT3-microRNA(miRNA)-targeted protein axis in VE against breast cancer-induced cardiac injury.VE for 4 weeks not only improved cardiac function of transgenic breast cancer female mice [mouse mammary tumor virus-polyomavirus middle T antigen (MMTV-PyMT +)] compared with littermate mice with no cancer (MMTV-PyMT -), but also increased myocardial STAT3 tyrosine 705 phosphorylation. Significantly more obvious cardiac fibrosis, smaller cardiomyocyte size, lower cell viability, and higher serum tumor necrosis factor (TNF)-α were shown in MMTV-PyMT + mice compared with MMTV-PyMT - mice, which were ameliorated by VE. However, VE did not influence the tumor growth. MiRNA sequencing identified that miR-181a-5p was upregulated and miR-130b-3p was downregulated in VE induced-cardioprotection. Myocardial injection of Adeno-associated virus serotype 9 driving STAT3 tyrosine 705 mutations abolished cardioprotective effects above. Myocardial STAT3 was identified as the transcription factor binding the promoters of pri-miR-181a (the precursor of miR-181a-5p) and HOX transcript antisense RNA (HOTAIR, sponged miR-130b-3p) in isolated cardiomyocytes. Furthermore, miR-181a-5p targeting PTEN and miR-130b-3p targeting Zinc finger and BTB domain containing protein 20 (Zbtb20) were proved in AC-16 cells. These findings indicated that VE protects against breast cancer-induced cardiac injury via activating STAT3 to promote miR-181a-5p targeting PTEN and to promote HOTAIR to sponge miR-130b-3p targeting Zbtb20, helping to develop new targets in exercise therapy for breast cancer-induced cardiac injury.</p>","PeriodicalId":8723,"journal":{"name":"Basic Research in Cardiology","volume":" ","pages":"113-131"},"PeriodicalIF":7.5,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141999391","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Preclinical models of cardiotoxicity from immune checkpoint inhibitor therapy. 免疫检查点抑制剂疗法心脏毒性的临床前模型。
IF 7.5 1区 医学 Q1 CARDIAC & CARDIOVASCULAR SYSTEMS Pub Date : 2025-02-01 Epub Date: 2024-07-22 DOI: 10.1007/s00395-024-01070-0
Florian Buehning, Tobias Lerchner, Julia Vogel, Ulrike B Hendgen-Cotta, Matthias Totzeck, Tienush Rassaf, Lars Michel

Immune checkpoint inhibitor (ICI) therapy represents a ground-breaking paradigm in cancer treatment, harnessing the immune system to combat malignancies by targeting checkpoints such as cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) and programmed cell death protein 1 (PD-1). The use of ICI therapy generates distinctive immune-related adverse events (irAEs) including cardiovascular toxicity, necessitating targeted research efforts. This comprehensive review explores preclinical models dedicated to ICI-mediated cardiovascular complications including myocarditis. Tailored preclinical models of ICI-mediated myocardial toxicities highlight the key role of CD8+ T cells, emphasizing the profound impact of immune checkpoints on maintaining cardiac integrity. Cytokines and macrophages were identified as possible driving factors in disease progression, and at the same time, initial data on possible cardiac antigens responsible are emerging. The implications of contributing factors including thoracic radiation, autoimmune disorder, and the presence of cancer itself are increasingly understood. Besides myocarditis, mouse models unveiled an accelerated progression of atherosclerosis, adding another layer for a thorough understanding of the diverse processes involving cardiovascular immune checkpoint signalling. This review aims to discuss current preclinical models of ICI cardiotoxicity and their potential for improving enhanced risk assessment and diagnostics, offering potential targets for innovative cardioprotective strategies. Lessons from ICI therapy can drive novel approaches in cardiovascular research, extending insights to areas such as myocardial infarction and heart failure.

免疫检查点抑制剂(ICI)疗法是一种突破性的癌症治疗模式,它通过靶向细胞毒性T淋巴细胞相关蛋白4(CTLA-4)和程序性细胞死亡蛋白1(PD-1)等检查点来利用免疫系统对抗恶性肿瘤。使用 ICI 疗法会产生独特的免疫相关不良事件(irAEs),包括心血管毒性,因此有必要开展有针对性的研究。本综述探讨了专门针对 ICI 介导的心血管并发症(包括心肌炎)的临床前模型。ICI 介导的心肌毒性的定制临床前模型突出了 CD8+ T 细胞的关键作用,强调了免疫检查点对维持心脏完整性的深远影响。细胞因子和巨噬细胞被确定为疾病进展的可能驱动因素,与此同时,关于可能的心脏抗原的初步数据也在不断涌现。人们对包括胸腔辐射、自身免疫紊乱和癌症本身在内的诱发因素的影响有了越来越多的了解。除心肌炎外,小鼠模型还揭示了动脉粥样硬化的加速进展,这为深入了解心血管免疫检查点信号传导的各种过程增添了新的视角。本综述旨在讨论目前 ICI 心脏毒性的临床前模型及其在改善增强风险评估和诊断方面的潜力,为创新性心脏保护策略提供潜在靶点。从 ICI 治疗中汲取的经验教训可以推动心血管研究的新方法,将见解扩展到心肌梗塞和心力衰竭等领域。
{"title":"Preclinical models of cardiotoxicity from immune checkpoint inhibitor therapy.","authors":"Florian Buehning, Tobias Lerchner, Julia Vogel, Ulrike B Hendgen-Cotta, Matthias Totzeck, Tienush Rassaf, Lars Michel","doi":"10.1007/s00395-024-01070-0","DOIUrl":"10.1007/s00395-024-01070-0","url":null,"abstract":"<p><p>Immune checkpoint inhibitor (ICI) therapy represents a ground-breaking paradigm in cancer treatment, harnessing the immune system to combat malignancies by targeting checkpoints such as cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) and programmed cell death protein 1 (PD-1). The use of ICI therapy generates distinctive immune-related adverse events (irAEs) including cardiovascular toxicity, necessitating targeted research efforts. This comprehensive review explores preclinical models dedicated to ICI-mediated cardiovascular complications including myocarditis. Tailored preclinical models of ICI-mediated myocardial toxicities highlight the key role of CD8<sup>+</sup> T cells, emphasizing the profound impact of immune checkpoints on maintaining cardiac integrity. Cytokines and macrophages were identified as possible driving factors in disease progression, and at the same time, initial data on possible cardiac antigens responsible are emerging. The implications of contributing factors including thoracic radiation, autoimmune disorder, and the presence of cancer itself are increasingly understood. Besides myocarditis, mouse models unveiled an accelerated progression of atherosclerosis, adding another layer for a thorough understanding of the diverse processes involving cardiovascular immune checkpoint signalling. This review aims to discuss current preclinical models of ICI cardiotoxicity and their potential for improving enhanced risk assessment and diagnostics, offering potential targets for innovative cardioprotective strategies. Lessons from ICI therapy can drive novel approaches in cardiovascular research, extending insights to areas such as myocardial infarction and heart failure.</p>","PeriodicalId":8723,"journal":{"name":"Basic Research in Cardiology","volume":" ","pages":"171-185"},"PeriodicalIF":7.5,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11790694/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141750195","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Sodium-glucose cotransporter 2 inhibitors and the cancer patient: from diabetes to cardioprotection and beyond. 钠-葡萄糖共转运体 2 抑制剂与癌症患者:从糖尿病到心脏保护及其他。
IF 7.5 1区 医学 Q1 CARDIAC & CARDIOVASCULAR SYSTEMS Pub Date : 2025-02-01 Epub Date: 2024-06-27 DOI: 10.1007/s00395-024-01059-9
Massimiliano Camilli, Marcello Viscovo, Luca Maggio, Alice Bonanni, Ilaria Torre, Claudio Pellegrino, Priscilla Lamendola, Lorenzo Tinti, Luciana Teofili, Stefan Hohaus, Gaetano Antonio Lanza, Peter Ferdinandy, Zoltan Varga, Filippo Crea, Antonella Lombardo, Giorgio Minotti

Sodium-glucose cotransporter 2 inhibitors (SGLT2i), a new drug class initially designed and approved for treatment of diabetes mellitus, have been shown to exert pleiotropic metabolic and direct cardioprotective and nephroprotective effects that extend beyond their glucose-lowering action. These properties prompted their use in two frequently intertwined conditions, heart failure and chronic kidney disease. Their unique mechanism of action makes SGLT2i an attractive option also to lower the rate of cardiac events and improve overall survival of oncological patients with preexisting cardiovascular risk and/or candidate to receive cardiotoxic therapies. This review will cover biological foundations and clinical evidence for SGLT2i modulating myocardial function and metabolism, with a focus on their possible use as cardioprotective agents in the cardio-oncology settings. Furthermore, we will explore recently emerged SGLT2i effects on hematopoiesis and immune system, carrying the potential of attenuating tumor growth and chemotherapy-induced cytopenias.

钠-葡萄糖共转运体 2 抑制剂(SGLT2i)是一类新药,最初是为治疗糖尿病而设计并获得批准的。这些特性促使它们被用于心力衰竭和慢性肾病这两种经常交织在一起的疾病。SGLT2i 具有独特的作用机制,因此也是一种有吸引力的选择,可用于降低心血管事件的发生率,并改善已有心血管风险和/或可能接受心脏毒性疗法的肿瘤患者的总体生存率。本综述将介绍 SGLT2i 调节心肌功能和新陈代谢的生物学基础和临床证据,重点关注其作为心血管肿瘤治疗中心脏保护药物的可能性。此外,我们还将探讨最近出现的 SGLT2i 对造血和免疫系统的影响,这些影响可能会减轻肿瘤生长和化疗引起的细胞减少症。
{"title":"Sodium-glucose cotransporter 2 inhibitors and the cancer patient: from diabetes to cardioprotection and beyond.","authors":"Massimiliano Camilli, Marcello Viscovo, Luca Maggio, Alice Bonanni, Ilaria Torre, Claudio Pellegrino, Priscilla Lamendola, Lorenzo Tinti, Luciana Teofili, Stefan Hohaus, Gaetano Antonio Lanza, Peter Ferdinandy, Zoltan Varga, Filippo Crea, Antonella Lombardo, Giorgio Minotti","doi":"10.1007/s00395-024-01059-9","DOIUrl":"10.1007/s00395-024-01059-9","url":null,"abstract":"<p><p>Sodium-glucose cotransporter 2 inhibitors (SGLT2i), a new drug class initially designed and approved for treatment of diabetes mellitus, have been shown to exert pleiotropic metabolic and direct cardioprotective and nephroprotective effects that extend beyond their glucose-lowering action. These properties prompted their use in two frequently intertwined conditions, heart failure and chronic kidney disease. Their unique mechanism of action makes SGLT2i an attractive option also to lower the rate of cardiac events and improve overall survival of oncological patients with preexisting cardiovascular risk and/or candidate to receive cardiotoxic therapies. This review will cover biological foundations and clinical evidence for SGLT2i modulating myocardial function and metabolism, with a focus on their possible use as cardioprotective agents in the cardio-oncology settings. Furthermore, we will explore recently emerged SGLT2i effects on hematopoiesis and immune system, carrying the potential of attenuating tumor growth and chemotherapy-induced cytopenias.</p>","PeriodicalId":8723,"journal":{"name":"Basic Research in Cardiology","volume":" ","pages":"241-262"},"PeriodicalIF":7.5,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11790819/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141454981","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Bridging cardiology and oncology in the era of precision medicine.
IF 7.5 1区 医学 Q1 CARDIAC & CARDIOVASCULAR SYSTEMS Pub Date : 2025-02-01 Epub Date: 2025-02-03 DOI: 10.1007/s00395-025-01097-x
Tienush Rassaf
{"title":"Bridging cardiology and oncology in the era of precision medicine.","authors":"Tienush Rassaf","doi":"10.1007/s00395-025-01097-x","DOIUrl":"10.1007/s00395-025-01097-x","url":null,"abstract":"","PeriodicalId":8723,"journal":{"name":"Basic Research in Cardiology","volume":"120 1","pages":"1-2"},"PeriodicalIF":7.5,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11790772/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143078517","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Basic Research in Cardiology
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1