Genetic diversity of marine forests results from complex interactions of eco-evolutionary processes. Among them, oceanographic connectivity driven by dispersal through water transport is hypothesized to play a pivotal role, yet its relative contribution has not been addressed at the global scale. Here, we test how present-day oceanographic connectivity is correlated with the distribution of genetic diversity of marine forests across the ocean.
Global.
Contemporary.
Marine forests of brown macroalgae (order: Fucales, Ishigeales, Laminariales and Tilopteridales).
Through literature review, we compiled a comprehensive dataset of genetic differentiation, encompassing 699 populations of 30 species. A biophysical model coupled with network analyses estimated multigenerational oceanographic connectivity and centrality across the marine forest global distribution. This approach integrated propagule dispersive capacity and long-distance dispersal events. Linear mixed models tested the relative contribution of site-specific processes, connectivity and centrality in explaining genetic differentiation.
We show that spatiality-dependent eco-evolutionary processes, as described by our models, are prominent drivers of genetic differentiation in marine forests (significant models in 91.43% of the cases with an average R2 of 0.50 ± 0.07). Specifically, we reveal that 18.7% of genetic differentiation variance is explicitly induced by predicted contemporary connectivity and centrality. Moreover, we demonstrate that long-distance dispersal is key in connecting populations of species distributed across large water masses and continents.
Our findings highlight the role of present-day oceanographic connectivity in shaping the extant distribution of genetic diversity of marine forests on a global scale, with significant implications for biogeography and evolution. This understanding can pave the way for future research aimed at guiding conservation efforts, including the designation of well-connected marine protected areas, which is particularly relevant for sessile ecosystems structuring species such as brown macroalgae.