{"title":"The maximum 3-star packing problem in claw-free cubic graphs","authors":"Wenying Xi, Wensong Lin","doi":"10.1007/s10878-024-01115-z","DOIUrl":null,"url":null,"abstract":"<p>A 3-star is a complete bipartite graph <span>\\(K_{1,3}\\)</span>. A 3-star packing of a graph <i>G</i> is a collection of vertex-disjoint subgraphs of <i>G</i> in which each subgraph is a 3-star. The maximum 3-star packing problem is to find a 3-star packing of a given graph with the maximum number of 3-stars. A 2<i>-independent set</i> of a graph <i>G</i> is a subset <i>S</i> of <i>V</i>(<i>G</i>) such that for each pair of vertices <span>\\(u,v\\in S\\)</span>, paths between <i>u</i> and <i>v</i> are all of length at least 3. In cubic graphs, the maximum 3-star packing problem is equivalent to the maximum 2-independent set problem. The maximum 2-independent set problem was proved to be NP-hard on cubic graphs (Kong and Zhao in Congressus Numerantium 143:65–80, 2000), and the best approximation algorithm of maximum 2-independent set problem for cubic graphs has approximation ratio <span>\\(\\frac{8}{15}\\)</span> (Miyano et al. in WALCOM 2017, Proceedings, pp 228–240). In this paper, we first prove that the maximum 3-star packing problem is NP-hard in claw-free cubic graphs and then design a linear-time algorithm which can find a 3-star packing of a connected claw-free cubic graph <i>G</i> covering at least <span>\\(\\frac{3v(G)-8}{4}\\)</span> vertices, where <i>v</i>(<i>G</i>) denotes the number of vertices of <i>G</i>.</p>","PeriodicalId":50231,"journal":{"name":"Journal of Combinatorial Optimization","volume":"38 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2024-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Combinatorial Optimization","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10878-024-01115-z","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
A 3-star is a complete bipartite graph \(K_{1,3}\). A 3-star packing of a graph G is a collection of vertex-disjoint subgraphs of G in which each subgraph is a 3-star. The maximum 3-star packing problem is to find a 3-star packing of a given graph with the maximum number of 3-stars. A 2-independent set of a graph G is a subset S of V(G) such that for each pair of vertices \(u,v\in S\), paths between u and v are all of length at least 3. In cubic graphs, the maximum 3-star packing problem is equivalent to the maximum 2-independent set problem. The maximum 2-independent set problem was proved to be NP-hard on cubic graphs (Kong and Zhao in Congressus Numerantium 143:65–80, 2000), and the best approximation algorithm of maximum 2-independent set problem for cubic graphs has approximation ratio \(\frac{8}{15}\) (Miyano et al. in WALCOM 2017, Proceedings, pp 228–240). In this paper, we first prove that the maximum 3-star packing problem is NP-hard in claw-free cubic graphs and then design a linear-time algorithm which can find a 3-star packing of a connected claw-free cubic graph G covering at least \(\frac{3v(G)-8}{4}\) vertices, where v(G) denotes the number of vertices of G.
期刊介绍:
The objective of Journal of Combinatorial Optimization is to advance and promote the theory and applications of combinatorial optimization, which is an area of research at the intersection of applied mathematics, computer science, and operations research and which overlaps with many other areas such as computation complexity, computational biology, VLSI design, communication networks, and management science. It includes complexity analysis and algorithm design for combinatorial optimization problems, numerical experiments and problem discovery with applications in science and engineering.
The Journal of Combinatorial Optimization publishes refereed papers dealing with all theoretical, computational and applied aspects of combinatorial optimization. It also publishes reviews of appropriate books and special issues of journals.