Double-duty isomerases: a case study of isomerization-coupled enzymatic catalysis

IF 11.6 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Trends in Biochemical Sciences Pub Date : 2024-08-01 DOI:10.1016/j.tibs.2024.04.007
{"title":"Double-duty isomerases: a case study of isomerization-coupled enzymatic catalysis","authors":"","doi":"10.1016/j.tibs.2024.04.007","DOIUrl":null,"url":null,"abstract":"<div><p>Enzymes can usually be unambiguously assigned to one of seven classes specifying the basic chemistry of their catalyzed reactions. Less frequently, two or more reaction classes are catalyzed by a single enzyme within one active site. Two examples are an isomerohydrolase and an isomero-oxygenase that catalyze isomerization-coupled reactions crucial for production of vision-supporting 11-<em>cis</em>-retinoids. In these enzymes, isomerization is obligately paired and mechanistically intertwined with a second reaction class. A handful of other enzymes carrying out similarly coupled isomerization reactions have been described, some of which have been subjected to detailed structure–function analyses. Herein we review these rarefied enzymes, focusing on the mechanistic and structural basis of their reaction coupling with the goal of revealing catalytic commonalities.</p></div>","PeriodicalId":440,"journal":{"name":"Trends in Biochemical Sciences","volume":"49 8","pages":"Pages 703-716"},"PeriodicalIF":11.6000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0968000424001075/pdfft?md5=a620107d4e3bd5bffcb072370bae840f&pid=1-s2.0-S0968000424001075-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Trends in Biochemical Sciences","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0968000424001075","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Enzymes can usually be unambiguously assigned to one of seven classes specifying the basic chemistry of their catalyzed reactions. Less frequently, two or more reaction classes are catalyzed by a single enzyme within one active site. Two examples are an isomerohydrolase and an isomero-oxygenase that catalyze isomerization-coupled reactions crucial for production of vision-supporting 11-cis-retinoids. In these enzymes, isomerization is obligately paired and mechanistically intertwined with a second reaction class. A handful of other enzymes carrying out similarly coupled isomerization reactions have been described, some of which have been subjected to detailed structure–function analyses. Herein we review these rarefied enzymes, focusing on the mechanistic and structural basis of their reaction coupling with the goal of revealing catalytic commonalities.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
双重职责异构酶:异构化耦合酶催化案例研究。
通常可以将酶明确归入七类中的一类,具体说明其催化反应的基本化学性质。一种酶在一个活性位点上催化两种或多种反应类别的情况并不多见。异构化水解酶和异构化加氧酶就是两个例子,它们催化异构化耦合反应,对生产支持视力的 11-顺式类视黄醇至关重要。在这些酶中,异构化必须与第二类反应配对,并在机制上相互交织。其他一些进行类似耦合异构化反应的酶已被描述,其中一些已进行了详细的结构-功能分析。在此,我们回顾了这些罕见的酶,重点研究了它们反应耦合的机理和结构基础,目的是揭示催化的共性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Trends in Biochemical Sciences
Trends in Biochemical Sciences 生物-生化与分子生物学
CiteScore
22.90
自引率
0.70%
发文量
148
审稿时长
6-12 weeks
期刊介绍: For over 40 years, Trends in Biochemical Sciences (TIBS) has been a leading publication keeping readers informed about recent advances in all areas of biochemistry and molecular biology. Through monthly, peer-reviewed issues, TIBS covers a wide range of topics, from traditional subjects like protein structure and function to emerging areas in signaling and metabolism. Articles are curated by the Editor and authored by top researchers in their fields, with a focus on moving beyond simple literature summaries to providing novel insights and perspectives. Each issue primarily features concise and timely Reviews and Opinions, supplemented by shorter articles including Spotlights, Forums, and Technology of the Month, as well as impactful pieces like Science & Society and Scientific Life articles.
期刊最新文献
ERK-dependent protein phosphorylation in KRAS-mutant cancer: a mix of the expected and surprising. TEX264-mediated selective autophagy directs DNA damage repair. Eph receptor signaling complexes in the plasma membrane. Endomembrane GPCR signaling: 15 years on, the quest continues. NMR spectroscopy reveals insights into mechanisms of GPCR signaling.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1