Mechanisms and rationales of SAM homeostasis.

IF 11.6 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Trends in Biochemical Sciences Pub Date : 2025-01-15 DOI:10.1016/j.tibs.2024.12.009
Zheng Xing, Benjamin P Tu
{"title":"Mechanisms and rationales of SAM homeostasis.","authors":"Zheng Xing, Benjamin P Tu","doi":"10.1016/j.tibs.2024.12.009","DOIUrl":null,"url":null,"abstract":"<p><p>S-Adenosylmethionine (SAM) is the primary methyl donor for numerous cellular methylation reactions. Its central role in methylation and involvement with many pathways link its availability to the regulation of cellular processes, the dysregulation of which can contribute to disease states, such as cancer or neurodegeneration. Emerging evidence indicates that intracellular SAM levels are maintained within an optimal range by a variety of homeostatic mechanisms. This suggests that the need to maintain SAM homeostasis represents a significant evolutionary pressure across all kingdoms of life. Here, we review how SAM controls cellular functions at the molecular level and discuss strategies to maintain SAM homeostasis. We propose that SAM exerts a broad and underappreciated influence in cellular regulation that remains to be fully elucidated.</p>","PeriodicalId":440,"journal":{"name":"Trends in Biochemical Sciences","volume":" ","pages":""},"PeriodicalIF":11.6000,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Trends in Biochemical Sciences","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.tibs.2024.12.009","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

S-Adenosylmethionine (SAM) is the primary methyl donor for numerous cellular methylation reactions. Its central role in methylation and involvement with many pathways link its availability to the regulation of cellular processes, the dysregulation of which can contribute to disease states, such as cancer or neurodegeneration. Emerging evidence indicates that intracellular SAM levels are maintained within an optimal range by a variety of homeostatic mechanisms. This suggests that the need to maintain SAM homeostasis represents a significant evolutionary pressure across all kingdoms of life. Here, we review how SAM controls cellular functions at the molecular level and discuss strategies to maintain SAM homeostasis. We propose that SAM exerts a broad and underappreciated influence in cellular regulation that remains to be fully elucidated.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
SAM稳态的机制和原理。
s -腺苷蛋氨酸(SAM)是许多细胞甲基化反应的主要甲基供体。它在甲基化中的核心作用和参与许多途径将其与细胞过程的调节联系起来,细胞过程的失调可能导致疾病状态,如癌症或神经退行性变。新出现的证据表明,细胞内SAM水平通过各种稳态机制维持在最佳范围内。这表明,维持SAM稳态的需要代表了所有生命领域的重大进化压力。在这里,我们回顾了SAM如何在分子水平上控制细胞功能,并讨论了维持SAM稳态的策略。我们认为,SAM在细胞调控中发挥了广泛而未被充分认识的影响,这一影响仍有待充分阐明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Trends in Biochemical Sciences
Trends in Biochemical Sciences 生物-生化与分子生物学
CiteScore
22.90
自引率
0.70%
发文量
148
审稿时长
6-12 weeks
期刊介绍: For over 40 years, Trends in Biochemical Sciences (TIBS) has been a leading publication keeping readers informed about recent advances in all areas of biochemistry and molecular biology. Through monthly, peer-reviewed issues, TIBS covers a wide range of topics, from traditional subjects like protein structure and function to emerging areas in signaling and metabolism. Articles are curated by the Editor and authored by top researchers in their fields, with a focus on moving beyond simple literature summaries to providing novel insights and perspectives. Each issue primarily features concise and timely Reviews and Opinions, supplemented by shorter articles including Spotlights, Forums, and Technology of the Month, as well as impactful pieces like Science & Society and Scientific Life articles.
期刊最新文献
FIGNL1 hexamer dissociates RAD51-filament: a new mechanism. Regulating Nrf2 activity: ubiquitin ligases and signaling molecules in redox homeostasis. Z-DNA at the crossroads: untangling its role in genome dynamics. Protein N-terminal modifications: molecular machineries and biological implications. Structured protein domains enter the spotlight: modulators of biomolecular condensate form and function.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1